
Secure coding trainingSecure coding training
Review of source code analyzers

Gerard Frankowski, Tomasz Nowak – PSNC
Poznań, 22-23 June 2010

connect • communicate • collaborate

Contents

Scan it or not?
Static source code analyzers

For Java:
– PMD
– findbugs

For C/C++
– RATS
– cppcheck

YASCA

connect • communicate • collaborate

YASCA
For PHP:

– Pixy,
– RIPS

Secure coding trainingSecure coding training
Scan it or not?

connect • communicate • collaborate

Source code security scanners

Tools especially designed for detecting security
vulnerabilities.

May also detect code that does not follow conventions May also detect code that does not follow conventions
(especially in Java).
Will not cover lint etc. here (tools mainly for developers,
although may contain security-related warnings).

The questions for this short introduction:
By whom should the tools be used?

connect • communicate • collaborate

What are their advantages and drawbacks?
Is it easy to use them?

By whom should the tools be used

In general, these are security, not development
tools:

That is why we do not recommend you should use them That is why we do not recommend you should use them
for full security analyses (this is our job).

Remember they say:
A fool with a tool is still a fool ;)
We have explicit claims in the team “do a code review,
but do not (only) use automated scanners”

connect • communicate • collaborate

Advantages of automated scanners

They may spare a lot of your time (quickly provide
a list of points to look at).

Especially for large source code repositories.Especially for large source code repositories.

They usually present well structured results – a
good starting point for a report.
May be easily used periodically to detect new flaws
Many tools are:

Free of charge.

connect • communicate • collaborate

Free of charge.
Ready to use on multiple operating systems (especially
Windows and Unix / Linux).

Disadvantages of automated
scanners

They are only tools, not intelligent beings.
May detect “well structured” errors (like using a
“dangerous” function).“dangerous” function).

Generate numerous false positives.
Sometimes only find a subset of issues.
May need full buildable sources

However, this will not be a problem for you!

Free tools sometimes:

connect • communicate • collaborate

Free tools sometimes:
Have less potential.
Can be harder to configure.
Lack help and / or documentation.
Are no longer supported.

To summarize

We do not recommend full usage of security code
scanners by developers:

You learn secure programming principles.You learn secure programming principles.
Knowing them, you are able.

– To detect the most obvious errors.
– To find apparent false positives.

Use the analyzers only to some extent: detect only
the basic patterns:

Using dangerous functions (“advanced grep”).

connect • communicate • collaborate

Using dangerous functions (“advanced grep”).
Detecting the most apparent data sanitization
vulnerabilities

– like echo $_GET[‘param’];

Discussion?

What do you think?
Have you already used security-
oriented code analyzers?
Which ones?
Do you like them? Or not? Why?
…

connect • communicate • collaborate

Example resources

OWASP section on source code analyzers:
http://www.owasp.org/index.php/Source_Code_Analysis
_Tools_Tools

List of source code security analyzers (both free
and commercial tools):

http://samate.nist.gov/index.php/Source_Code_Security
_Analyzers.html

Source code analysis tools – an overview :

connect • communicate • collaborate

https://buildsecurityin.us-
cert.gov/bsi/articles/tools/code/263-BSI.html

Secure coding trainingSecure coding training
Java security tools – PMD

connect • communicate • collaborate

General information

PMD – Java source code scanner
Last version: 4.2.5 (February 2009)Last version: 4.2.5 (February 2009)

Copyright © 2002-2009
InfoEther, Inc.

http://findbugs.sourceforge.net

BSD-style license

Crossplatform (Java)

Contains special module

connect • communicate • collaborate

Contains special module
Copy/Paste Detector
(Java, JSP, C, C++, Fortran and PHP)

Usage

Running PMD:
Download and unpack, or build from sourcesDownload and unpack, or build from sources

Generate HTML report, or

Use a plugin – many available:
“JDeveloper, Eclipse, JEdit, JBuilder, BlueJ, CodeGuide,
NetBeans/Sun Java Studio Enterprise/Creator, IntelliJ
IDEA, TextPad, Maven, Ant, Gel, JCreator, and Emacs”
Plugins for IDEs, e.g. Eclipse and NetBeans

connect • communicate • collaborate

Plugins for IDEs, e.g. Eclipse and NetBeans
Ant task or maven report plugin

PMD screenshot
(DEMO)

connect • communicate • collaborate

Problems looked for

Tens of sets at http://pmd.sourceforge.net/rules

You may want to disable or suppress warnings

Most findings are not serious bugs

Eclipse can fix many warnings – use „Clean up”

Special module – Copy/Paste Detector

– Support for many languages

connect • communicate • collaborate

– Support for many languages

– Two times rewritten (algorithm changed)

– Sample results
http://pmd.sourceforge.net/cpdresults.txt

Our opinion

Good rulesets for „style” problems

Numerous unimportant warningsNumerous unimportant warnings

Effort needed to filter out unnecessary alarms

Integration with huge number of editors and
building mechanisms

Unique CPD functionality allows fixing
maintainability problems

connect • communicate • collaborate

maintainability problems

Undergoing heavy refactorization – version 5

Hints for the developers

Choose right rulesets – sorting through a thousand
line report to find the few violations you're really line report to find the few violations you're really
interested in takes all the fun out of things

Start with some of the obvious rulesets (unusedcode,
basic) and then take the more controversial ones

PMD rules are not set in stone – pick the ones you
need, ignore or suppress others

connect • communicate • collaborate

Use PMD IDE plugins to easily jump through the code

http://pmd.sourceforge.net/bestpractices.html

Example resources

Tool documentation:
http://pmd.sourceforge.net/

http://pmd.sourceforge.net/cpd.htmlhttp://pmd.sourceforge.net/cpd.html

connect • communicate • collaborate

Secure coding trainingSecure coding training
Java security tools – findbugs

connect • communicate • collaborate

General information

FindBugs – Java bytecode scanner
Last version: 1.3.9 (August 2009).
Trademarked by The University of Maryland

http://findbugs.sourceforge.net/

GNU Lesser General Public License

Crossplatform (Java)

Starts also from browser (WebStart)

369 bug patterns

connect • communicate • collaborate

369 bug patterns
– Categories: CORRECTNESS, MT_CORRECTNESS,

BAD_PRACTICICE, PERFORMANCE, STYLE
– Priorities: 1 (high) to 3 (low)

XML output and data mining

Usage

Running FindBugs:
Download & run with java -jar

– binary (zip) – binary (zip)
– build from sources with Ant

Plugins for IDEs, e.g. Eclipse and
NetBeans
Ant task or maven report plugin
WebStart from
findbugs.cs.umd.edu/demo/

connect • communicate • collaborate

findbugs.cs.umd.edu/demo/

Additional rules in http://fb-
contrib.sourceforge.net/

Dodaj = Add, Usuń = RemoveQuick Polish course:

FindBugs screenshot

connect • communicate • collaborate

Findings

Some findings are brilliant – so much to learn!
Returning mutable fields

Inner classes which could be static

Not fulfilled contracts, e.g. clone returning null

A lot of performance remarks
Concatenation of strings with + in a loop

toString() called on strings

Unnecessary or missing null checks

Inconsistent design

connect • communicate • collaborate

Inconsistent design
Protected fields in final classes

Missing synchronization

Security bad practices
Hardcoded or empty db password
XSS and SQL injection discovery

Results

Bugs are grouped by various criteria

Categories

PrioritiesPriorities

Packages

Source fragment displayed (if available)

Detailed description of the finding

Can set “designation” for every bug:
Needs further study

Not a bug

connect • communicate • collaborate

Not a bug

Mostly harmless

Should fix

Must fix

Bad analysis

Unclassified

XML export & data mining capabilities
Visualization of bug databases

connect • communicate • collaborate

Our opinion about FindBugs

• Very easy to run and use.

• Rare false positives.• Rare false positives.

• Good explanation of found
issues.

• Unique quality monitoring
mechanisms.

• Up to date – still developed

connect • communicate • collaborate

• Up to date – still developed
and extra rules available.

Hints for the developers

FindBugs operates on bytecode, but attaching
sources too comes very handy

Provide dependent classes to get more detailed Provide dependent classes to get more detailed
analysis

If a description is not clear, google for its bug code

connect • communicate • collaborate

Example resources

Bug descriptions:
http://findbugs.sourceforge.net/bugDescriptions.html

http://fb-contrib.sourceforge.net/bugdescriptions.htmlhttp://fb-contrib.sourceforge.net/bugdescriptions.html

FindBugs on Google Code
http://code.google.com/p/findbugs

connect • communicate • collaborate

Secure coding trainingSecure coding training
Code scanners for C/C++: RATS

connect • communicate • collaborate

RATS - introducion

RATS: Rough Auditing Tool for Security
Latest release: 2.3

– Seems not to be developed actively– Seems not to be developed actively

Made by Fortify Software
http://www.fortifysoftware.com/security-
resources/rats.jsp
GNU Public License
Systems: Unix/Linux, Windows
Requires Expat parser (http://expat.sourceforge.net)

connect • communicate • collaborate

Requires Expat parser (http://expat.sourceforge.net)
Languages: C, C++, Perl, PHP, Python
Vulnerabilities: including buffer overflows, TOCTOU
(race conditions), Remote Code Execution, shows
dangerous functions)

Usage

Invoke the tool from the command line
rats [-d] [-h] [-r] [-w <1,2,3>] [-x] [file1 file2 ... fileN]
rats –h (or –help) gives more informationrats –h (or –help) gives more information

We use RATS usually as follows:
All source files are copied to src subdirectory

– RATS uses recursion in source directories by default

rats -w3 --html --context src > results\rats3.html
– w3 – maximum warning level
– --html – output in HTML format

connect • communicate • collaborate

– --html – output in HTML format
– --context – display the problematic line
– Redirection of the results to a file

We do not use language specification, RATS is clever
enough to detect it itself

Sample result for a C application

connect • communicate • collaborate

Sample result for a PHP application

A short PHP file containing passthru() call

connect • communicate • collaborate

Our opinion and advices

RATS would be good for you at emphasizing:
Dangerous functions
TOCTOU issuesTOCTOU issues
Fixed size buffers

Many false positives (like other tools)
Sufficient reporting facilities
Works fast, but sometimes crashes…

Try to change e.g. warning level or output format then, may

connect • communicate • collaborate

Try to change e.g. warning level or output format then, may
help

You could run it on the 1 or 2 warning level to avoid
being informed about complicated stuff

Secure coding trainingSecure coding training
Code scanners for C/C++: cppcheck

connect • communicate • collaborate

cppcheck – introduction

C/C++ source code scanner
Latest version: 1.43 (May 2010)
http://cppcheck.wiki.sourceforge.nethttp://cppcheck.wiki.sourceforge.net
GNU GPL license
Command line mode + GUI mode
Systems: at least cmd line mode should work on all

– Available as .msi for Windows

Languages: C/C++
Vulnerabilities: bounds checking, variable range, memory

connect • communicate • collaborate

Vulnerabilities: bounds checking, variable range, memory
leaks, NULL pointer dereference, many others

The community goal: no false positives

Usage

Command line usage:
cppcheck [--all] [--auto-dealloc file.lst] [--error-exitcode=[n]] [--
force][--help] [-Idir] [-j [jobs]] [--quiet] [--style] [--unused-force][--help] [-Idir] [-j [jobs]] [--quiet] [--style] [--unused-
functions][--verbose] [--version] [--xml] [file or path1] [file or
path] ...

The result is sent to the standard output by default, so
we recommend to redirect it to a file

The output may be customized through XSLT

connect • communicate • collaborate

Our favourite cppcheck options:

We use it usually in the following way:
cppcheck -a -s -v --unused-functions [src_path] >
result.txtresult.txt

a (= --all) – more checks, but also more false positives
s (= --style) – check coding style
v (= --verbose) – more detailed error reports
--unused-functions – detect functions that are unused

You may omit –a switch to avoid sophisticated

connect • communicate • collaborate

You may omit –a switch to avoid sophisticated
analysis
Adjust report verbosity as you wish

If too much seems to be out of your area of interest, switch
it off

GUI usage

Select directory with source code:
File | Check directory | Choose
Please note that cppcheck starts to work at once!Please note that cppcheck starts to work at once!

connect • communicate • collaborate

Command line results

connect • communicate • collaborate

GUI results

May be saved to an XML or a TXT file
External application may be configured as code viewer

connect • communicate • collaborate

Our opinion or advice

Although GUI mode has got Settings page, the
command line mode is much easier to customize
Very little false positives indeedVery little false positives indeed

However the tool seems not to detect everything it should
Good for you (no complicated stuff reported)

The tests take relatively much time
Fine reporting facilities, although customizing the
reports requires your own effort

connect • communicate • collaborate

reports requires your own effort
But fine that this is possible at all!

Our advice to the developers
Rescan your code as a complement to other measures, it is
possible that several bugs will be
easily found

More resources

Flawfinder – another famous tool not described here
Made by David A. Wheeler
http://www.dwheeler.com/flawfinder, documentation at
http://www.dwheeler.com/flawfinder/flawfinder.pdf
The page contains also a list of other scanners with links
and short descriptions
Latest release: 1.27 (January 2007)
Released under GPL license
Designed for Unix/Linux, but you may use with Cygwin for

connect • communicate • collaborate

Designed for Unix/Linux, but you may use with Cygwin for
Windows
Requires Python 1.5
Programming languages: C/C++

Secure coding trainingSecure coding training
YASCA – Yet Another Source Code Analyzer

connect • communicate • collaborate

YASCA

� Stands for “Yet Another Source Code Analyzer.”

� An open source program which looks for security �
vulnerabilities , code-quality , performance , and
conformance to best practices in program source code,
integrating with other open-source tools as needed.

� http://www.yasca.org/

� Main functionality:

�Aggregating results from other analyzers.

connect • communicate • collaborate

�Aggregating results from other analyzers.

�Automated grepping.

� Reports in HTML, CSV, XML, MySQL, SQLite, and other
formats

Supported languages

� Java

� C/C++

� JavaScript

� CSS� C/C++

� .NET(VB.NET,
C#, ASP.NET)

� PHP

� ColdFusion

� COBOL

� CSS

� Visual Basic

� ASP

� Python

� Perl

�

connect • communicate • collaborate

� COBOL

� HTML
� Raw HTTP Traffic

Architecture

� Written in PHP.

� Plugins contain external utilities:

�FindBugs, PMD, JLint,
JavaScript Lint, PHPLint,
Cppcheck, ClamAV, Pixy, and
RATS.

� Appropriate utilities are
executed and results
consolidated.

connect • communicate • collaborate

consolidated.

� YASCA itself contains many
interesting rules.

YASCA
Grep rules

� yasca
� doc
� etc � etc
� lib
� plugins

• ClamAV.php
• CppCheck.php
• default

– grep
» C
»

connect • communicate • collaborate

» PHP
» Java

– pmd
– ...

• ...

� resources

YASCA
Sample grep rule

yasca-core/plugins/default/grep/Injection.XSS.PHP.grep

name = Cross Site Scripting via concatenation from source in PHP
file_type = PHP
grep = /(print|echo).*?\.*\s*\$_(POST|GET)\[.*?\]\.*\s*/
category = Cross-Site Scripting
severity = 1

connect • communicate • collaborate

severity = 1
category_link = http://www.owasp.org/index.php/Cross_Site_Scripting
description = (...)

Secure coding trainingSecure coding training
PHP security tools – Pixy

connect • communicate • collaborate

General information

Pixy – PHP source code scanner :
Last version: 3.03 (July 2007).
Made by Secure Systems Lab, Vienna University of
Technology.
http://pixybox.seclab.tuwien.ac.at/pixy.
Freeware.
Systems: Unix/Linux, Windows.
Requires Sun Java Runtime Environment.

connect • communicate • collaborate

Requires dotty tool for result analysis (Graphviz package
– http://www.graphwiz.org).
Languages: PHP 4 (more general: not class-oriented).
Vulnerabilities: XSS, SQL Injection.

Usage

Pixy takes a single PHP file as input.
For scanning real applications, we encourage to prepare
appropriate scripts .appropriate scripts .
Run the following command in the installation directory
run_all [options] [file].

Running with no parameters will show help.

connect • communicate • collaborate

The results

Status information is sent to stdout.
You may want to redirect.

Vulnerability information is sent to graphs
subdirectory.
The vulnerability graphs should be reviewed by dotty
tool.
The Documentation page contains a tutorial about
how to understand the results:

connect • communicate • collaborate

how to understand the results:
http://pixybox.seclab.tuwien.ac.at/pixy/documentation.php

The results – vulnerability
information

List of files that refer to the file
calledby_[filename].txt

List of includes for the fileList of includes for the file
includes_[filename].txt

Data flow graphs for found XSS vulnerabilities
xss_[filename]_[n]_dep.dot
xss_[filename]_[n]_min.dot

Data flow graphs for found SQL Injection vulns

connect • communicate • collaborate

Data flow graphs for found SQL Injection vulns
sql_[filename]_[n]_dep.dot
sql_[filename]_[n]_min.dot

The files marked with bold font should be analyzed
(contain simplified graphs)

Example – a short demo

Vulnerable ping.php file
Remembered from Remote Code Execution talk

dotty: xss _test.php_ 1_min.dot:

connect • communicate • collaborate

Our opinion

An interesting approach.
Numerous false positives.
Effort needed to filter out unnecessary alarms, but Effort needed to filter out unnecessary alarms, but
those remaining spare a lot of work – especially for
large sites.
Relatively complicated result analysis .
Inability to work with object-oriented PHP 5.x is a
significant disadvantage.

connect • communicate • collaborate

significant disadvantage.
Seems that development has ceased.

Hints for the developers

Find the simplest graphs (.dot files are actually
simple text files, so appropriate tools may be easily
developed (look for files with only a few items).developed (look for files with only a few items).
Look at the last item (where the malicious data
may be introduced?) and the top one (where it is
displayed?)

connect • communicate • collaborate

Example resources

Tool documentation:
http://pixybox.seclab.tuwien.ac.at/pixy/documentation.php

Conference papers & reports:Conference papers & reports:
http://www.seclab.tuwien.ac.at/papers/pixy.pdf
http://www.seclab.tuwien.ac.at/papers/pixy_techreport.pdf
http://www.seclab.tuwien.ac.at/papers/pixy2.pdf

connect • communicate • collaborate

Secure coding trainingSecure coding training
PHP security tools – RIPS

connect • communicate • collaborate

General information

RIPS – PHP source code scanner:
Last version: 0.3 (24 May 2010).
http://rips-scanner.sourceforge.net
BSD Licence.
Systems: Wherever PHP can be run.
Reguires a Web server and a browser (Opera, Firefox).
Languages: PHP (partial support for object-oriented).
Vulnerabilities:

connect • communicate • collaborate

– XSS.
– SQL Injection.
– Local/Remote File Inclusion.
– Remote Code Execution
– And more…

Technical details (those that you
need)

Tokens:
The code is split into tokens which are analyzed.
Exemplary tokens are: opening tag, variable, Exemplary tokens are: opening tag, variable,
whitespace, string.

PVF = Potentially Vulnerable Functions.
Functions where vulnerabilities may be introduced, e.g.:

– system() for Remote Code Executions
– echo() for XSS
– readfile() for Information Disclosure

connect • communicate • collaborate

– readfile() for Information Disclosure

Currently 139 functions, you may add your own.

RIPS traces back, whether the suitable parameters
of the PVFs could be tainted by the user.

Usage

Simple Web interface:
Just prepare a local website and run in a Web server.

connect • communicate • collaborate

Verbosity levels

5 levels (the default is 1):
1: traces tainted PVFs without any
securing actions applied.securing actions applied.
2: files and local DBs treated
as potentially malicious.
3: shows PFVs even if securing actions have been applied.
4: displays additional information about code structure.
5: shows all PFVs calls and associated traces.

Level X includes all levels from 1 to X-1

connect • communicate • collaborate

Level X includes all levels from 1 to X-1
The higher level,

The higher chance of detecting a vulnerability.
The more false postivies.
The longer takes the scan.

Our opinion

A promising approach:
2nd best submission during PHP Security Month.
But beware that this is a very initial release!But beware that this is a very initial release!

– Sometimes I am not sure why and how it does somethi ng.

Easy installation and use:
However, some GUI improvements would be useful (e.g.
“Scan for all vulnerabilities” setting, or GUI-based selection
of source code to be scanned).

connect • communicate • collaborate

Hints for the developers

We suggest two ways of using by the developers.
Scan your code with verbosity level 1:

Will stop the most obvious cases of lack data sanitization Will stop the most obvious cases of lack data sanitization
and the apparent-XSS-who-to-hell-wrote-this-code remarks
in your internal security reports ;).

Define your subset of PVFs and set verbosity level 5:
You will get a more advanced grep for dangerous functions.

– Added value: shows the data flow through the functions.

Look at the reported code snippets if everything is OK.

connect • communicate • collaborate

Look at the reported code snippets if everything is OK.
Good e.g. for detecting functions calling OS commands.

Custom definition of PVFs

Look into <install_dir>\config\PVF.php:
Comment or delete lines with functions you are not
interested in:interested in:

connect • communicate • collaborate

More resources

Unfortunately, not much for now :(
Sourceforge site:

http://rips-scanner.sourceforge.nethttp://rips-scanner.sourceforge.net

Paper by Johannes Dahse:
http://php-security.org/downloads/rips.pdf

And the source code (especially config subdirectory).

PHPLint – another tool: validator and documentator

connect • communicate • collaborate

PHPLint – another tool: validator and documentator
for PHP 4 and PHP 5 programs

http://www.icosaedro.it/phplint

