
Secure coding trainingSecure coding training
Data sanitization

Gerard Frankowski, PSNC
Poznań, 22-23 June, 2010

connect • communicate • collaborate

The code and the application

The code builds programs (applications)
The computers are based on von Neumann
modelmodel
They store the application code and its data
in the same structure (memory)
Therefore the program may affect its own
code

A computer program accepts data,
processes it and returns result (output)

J. von Neumann
(1903-1957)

Input

Program

connect • communicate • collaborate

processes it and returns result (output)
It should conform to the program
specification

The program input is the most crucial
from the security point of view

Output

Program

Data filtering (sanitization)

Security vulnerabilities may have different
background

Inappropriate project (e.g. authentication data logged to Inappropriate project (e.g. authentication data logged to
a world-readable file, an error message reveals too
much information)
Environment problems (e.g. vulnerable CMS)
Code-related problems (e.g. a buffer overflow, XSS)

Today we speak about the last group

connect • communicate • collaborate

The main (if not the only) reason of such
security vulnerabilities is insufficient, or a lack
of, sanitization of the input data passed to the
application

What is input data?

Application input parameters…
The most obvious way of passing data to the program
For standalone applications: the command line
parameters

– C: void main(int argc, char *argv[]){
– Java: public static void main(String[] args){

For Web applications: POST/GET data
– http://www.application.com?param=value

… and also other (many) data sources!

connect • communicate • collaborate

… and also other (many) data sources!

Other sources of input data

Environment variables
Configuration files
Output from the internal database (!)
Authentication data (e.g. X509 certificate DN)
The content of received network packets (including
the data returned from external services like DNS)
The data entered interactively by the user

connect • communicate • collaborate

For Web application: cookies, HTTP headers

Trust only the data defined inside your code!

Possible approaches

Lack of data sanitization
Filtering on the client side (esp.
Web apps)
White list approach
Black list approach
Regular expressions

connect • communicate • collaborate

Can I not filter at all?

AAArgh…
Why my application is so significant?

connect • communicate • collaborate

So never, ever try that!

Filtering on the client side
(Web application example)

There are useful mechanisms to assure that the user
does not enter out-of-range values

Tag propertiesTag properties
<input type="text" name="first_name" value=""

size="20" />

Validation functions
<form name="form1" action="./display.php"

method="post" onsubmit="return validate(); "
/>

connect • communicate • collaborate

/>

It is useful in terms of usability but not in terms of
security!

Must not be the only protection layer!
– Actually, it is not a protection layer…

Filtering on the client side (2)

Is your application the only
way to contact the server?

connect • communicate • collaborate

Burp proxy – a tool for easy sending
crafted network packets

connect • communicate • collaboratehttp://portswigger.net

Black list approach

You define what you do not accept
e.g. “<script>”, “--”, “;”, “../”

Advantages
Often much more simple to implement

Disadvantages

e.g. “<script>”, “--”, “;”, “../”
Everything that matches is rejected
Everything else is accepted

connect • communicate • collaborate

Disadvantages
Difficult or impossible to cover the attack
vector

– New threats
– e.g. %3CSCRIPT%3E…

White list approach

You define what you accept
e.g. “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”, “Sun”

Advantages
Closer to the security principles
Much more precise filtering

Everything what matches is accepted
Everything else is rejected

connect • communicate • collaborate

Much more precise filtering

Disadvantages
The white list may be extremely difficult to define

Regular expressions

A great help for definition of both black and white
lists

Example: Polish postal code = ^[0-9]{2}-[0-9]{3}$Example: Polish postal code = ^[0-9]{2}-[0-9]{3}$

$strRegExp = “^[0-9]{2}-[0-9]{3}$”;

$strInput = $_GET[‘code’];

if (preg_match($strRegExp, $strInput))

do_normal_processing(); //MATCH!

else

connect • communicate • collaborate

Whitelist
else

do_error(); //NO MATCH!

A question: which type of the filtering list is
implemented above?

Simplifying regular expressions

The more tight the regular expression, the better
However, in some cases the format definition might
be too complicated

An example of “non-100% compliant” regular expression:
email address (used for several years for registration for
PSNC trainings)

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-
Z]{2,4}$

connect • communicate • collaborate

Z]{2,4}$

From security point of view, it is better to stop proper
data than accept a malicious string

But ask your project leader!

Investigating the values

Properly formatted data might be malicious as well
A (real) example: Web application accepts two values
(startYear and endYear) and generates some statistics (startYear and endYear) and generates some statistics
between the mentioned years

http://.../user/usnormal.php?query=usmaxmem&s
tartYear=1000&endYear=2009

Fatal error: Allowed memory size of 16777216
bytes exhausted (tried to allocate 71
bytes) in /var/www/html /…/funciones.php on

connect • communicate • collaborate

bytes) in /var/www/html /…/funciones.php on
line 1047

A more strict regular expression would help here too!
Sometimes it is easier to add some ifs than make
sophisticated regular expressions

Summary

Filter your input data at all!
Remember all sources of the input data
Implement the client side filtering, but for the
user convenience, not for security

Whenever possible, use white lists
Consider the structure of your data
Where it is too complicated, provide carefully designed
black lists

connect • communicate • collaborate

Use regular expressions for the format definitions
Where applicable, additionally check the value

