
Secure coding trainingSecure coding training
Securing applications on a higher level

Gerard Frankowski, PSNC
Poznań, 22-23 June 2010

connect • communicate • collaborate

Introduction

This presentation is intended to provide high-level
advices in order to produce secure applications
The following issues will be covered:

Responsibility for secure systems
Session management
Appropriate error handling
Information disclosure
Resource discovery

connect • communicate • collaborate

Resource discovery
Coding conventions
And several others (very briefly!)

Responsibility for secure systemsResponsibility for secure systems

connect • communicate • collaborate

Who is responsible for security?

Manager / Project leader
The idea – what will our application do?
The budget
Usability and efficiency / security tradeoff

The developers
Appropriate development of the project
Limited by the project scope…

The administrators/security specialists

connect • communicate • collaborate

The administrators/security specialists
Configuration and access to services
Configuration of network, servers, access devices
Limited by their systems and security budget…

Problems of investing in security

Investing in security does not bring
immediate and noticeable gain!

We just spend some money, that we could We just spend some money, that we could
save and maybe nothing bad would happen
The costs of security on all levels are usually
relatively high

The problem begins when we do not
take care of security, and the bad things
really happen

connect • communicate • collaborate

really happen
Usually there is no way back

Security – the problem of users?

In general, we cannot expect specialized
knowledge on IT security from users

True for mass e-services, but also e.g. for research True for mass e-services, but also e.g. for research
institutions services users

The user should have some basic awareness and
applications should support that

Appropriate configuration facilities
Usability of security features

connect • communicate • collaborate

Security vulnerabilities in the source code would
affect even the best educated users!

Information disclosureInformation disclosure

connect • communicate • collaborate

Information disclosure

Every user should have only information that he or
she really needs for legitimate purposes

The above is directly derived from the minimum The above is directly derived from the minimum
privileges principle

All breaches of that rule may be called Information
Disclosure
An attacker tries to collect maximum amount of
information before the attack

connect • communicate • collaborate

information before the attack
Information disclosure vulnerabilities are great help for
that purpose

Information disclosure – example 1
phpinfo()

connect • communicate • collaborate

Information disclosure – example 2
trace.axd

connect • communicate • collaborate

Information disclosure – example 3
ASP.net improperly configured

connect • communicate • collaborate

What may be disclosed?

System paths (and thus OS family/type)
Configuration details
Software detailed versions

Known exploits for that versions may be then tested

Application structure and behavior
Source code details

File, line number, function
Sometimes even code snippets

connect • communicate • collaborate

Sometimes even code snippets

User data
And more…

Responsibility distribution for
information disclosure

This is an area where system and server
administrators have relatively much to do

Web server configuration (e.g. Apache, IIS)Web server configuration (e.g. Apache, IIS)
Scripting engine configuration (e.g. PHP, ASP.NET)
OS & database configuration
Local firewall

However, the mistakes of developers may
contribute to information disclosure as well

connect • communicate • collaborate

contribute to information disclosure as well
Application mechanisms that reveal too much
information
Too much trust that the server administrators will not
cause information disclosure

How developers may disclose too
much information

Indirectly – allowing drawing conclusions
Inappropriate functionality – e.g. different error
messages for bad username and bad passwordmessages for bad username and bad password
Timing issues – e.g. different computation times for
certain data sets may cause disclosing the crypto key

Directly
Application versions/banners
System paths

connect • communicate • collaborate

Error messages in cryptographic protocols
Too detailed error explanations

Too detailed error explanations

Sensitive data in displayed messages, e.g.
Password blah1234 provided for user blah incorrect

If this is a client-server application (incl. Web), the
message may be sniffed – better would be:

Your password is incorrect. Please try again
Even the user name is not necessary – might cause
enumerating users (and the user knows it anyway)

The user should not exactly know your technical

connect • communicate • collaborate

problem – but just:
That something has just happened
What he or she has got to do

Countermeasures

The detailed information should be saved to logs only
Give the user the minimum amount of information

E.g. only a filename instead the full pathE.g. only a filename instead the full path
A good idea would be assigning an ID to problems where the
user might need some interaction
An unexpected problem occurred. Please contact our
support at [address] and refer to problem ID [id]

Timing issues – in sensitive applications consider
adding short random sleep() to computations

connect • communicate • collaborate

adding short random sleep() to computations
In case of cryptographic protocols, consider
terminating the transmission instead an error message
Don’t always trust administrators;)

Resource discoveryResource discovery

connect • communicate • collaborate

Resource discovery

Leaving any functionality (usually not available
directly) in easy-to-guess places

Usually applied to Web applications Usually applied to Web applications

May lead to information disclosure and is closely
related with (but not equivalent to) it
Often performed by attackers in the initial phase of
the attack
Especially easy in applications based on known

connect • communicate • collaborate

Especially easy in applications based on known
frameworks/CMSs

Resource discovery – phpinfo

Many PHP developers use a short file with phpinfo()
call to check whether their fresh application works

Yet many of them forget to remove it laterYet many of them forget to remove it later

Where the above may be usually found?
phpinfo.php
test.php
info.php
php.php

connect • communicate • collaborate

php.php
a.php
p.php

A good example of resource discovery – results in
information disclosure

Resource discovery – other examples

Administration interface
Often found under /admin or /administrator directories
phpMyAdmin and alike common directories phpMyAdmin and alike common directories
May ease attacks on the administrator account

Statistics pages
Usually /stats or /statistics

Old or test functionality
Check /test, /old, /backup

connect • communicate • collaborate

Documents
May be often found under /doc(s), /document(s),
/upload(s) and alike
Real gain for attackers usually requires
directories indexing switched on

Resource discovery – example
Statistics page

A bank website, Webalizer pages under /stats
Often clicked links (including some to “hidden”
administration interface and internal documents)administration interface and internal documents)
Several internal IP addresses

connect • communicate • collaborate

Countermeasures

Besides avoiding the most apparent errors (like
leaving phpinfo()), the situation is not so easy

You will not rewrite Content Management Systems to You will not rewrite Content Management Systems to
change directory names
Remember that the majority of the Web application
structure may be read from the HTML code

But what you can do
If you have modules that are not linked to anywhere
else, do not place them under default / intuitive names

connect • communicate • collaborate

else, do not place them under default / intuitive names
Never leave test or unnecessary functionality, especially
under directories like test, old, etc.

Coding conventionsCoding conventions

connect • communicate • collaborate

Introduction to coding conventions

Any convention that produces solid code is good ;)
Although there are ones that make the code easier to
read (we personally prefer such ones)read (we personally prefer such ones)

Significant facets for understandable source code
Naming
Function specifications

– What does it do?
– Input and output parameters
– Caveats

connect • communicate • collaborate

– Caveats

Comments through the code are welcome as well

Especially Java has got strongly accepted
conventions

Why the code clarity does matter?

Remember that someone else may have to read
and/or modify the code

If the code is easier to read, a security specialist will If the code is easier to read, a security specialist will
prepare a faster and more accurate opinion
It the code is harder to understand, another developer,
who will be working on it, will produce more bugs

Debian OpenSSL PRNG vulnerability (published in
May 2008) was caused by commenting a line that
”seemed” unnecessary by Debian developers

connect • communicate • collaborate

”seemed” unnecessary by Debian developers
The line filling a PRNG buffer with random data was not
provided with any comment about its significance
The degree of data randomness decreased drastically,
which produced weak crypto keys

International Obfuscated C Code
Contest ;)

connect • communicate • collaborate

A commentary convention we like

/*!

* Check a string for the occurrence of certain characters.
This is specifically for

* the checking of environment variables that make it to a log * the checking of environment variables that make it to a log
file. The newline

* character '\n' is not allowed to appear in it as it allows
reformatting the

* intended layout of the log file and may cause a potential
exploitation.

*

* \param variable Variable to be checked

*

connect • communicate • collaborate

* \return true, if the variable is found to be sane, false
otherwise.

*/

int glexec_sane_variable(const char *variable)

When to avoid too much comments?

Static pages in Web applications!
Static pages and JavaScript files may be easily
downloaded and studied by attackersdownloaded and studied by attackers

Consider using:
Tools that will strip out all comments from the release
version of the code
(For more sensitive applications) some techniques of
code obfuscation – even if it contradicts, what we have
already said

connect • communicate • collaborate

already said

Session managementSession management

connect • communicate • collaborate

HTTP session

HTTP is stateless
Simplicity is great, but not always
HTTP cannot differentiate between user A and user B

Extra solutions are required for e-services
Connection state sent in URL
Connection state sent in hidden fields
Session

HTTP session

connect • communicate • collaborate

HTTP session
Set of information about a connection, differentiated by
session ID
Server side – session file or database entry
Client side – cookie

Threats

Stealing identities of other users
Impersonating the victim
Stealing data or money, gaining private information
(blackmail opportunities), making damages on behalf of
the victim
If the administrator identity is stolen, arbitrary activity in
the portal may be performed

Information disclosure
Improperly configured error handling mechanism

connect • communicate • collaborate

Improperly configured error handling mechanism
Different OSs/Web servers may produce specific errors

Is it real?

In 2008 PSNC Security Team investigated 50
Polish e-commerce websites

Test 1 – unexpected characters in cookie nameTest 1 – unexpected characters in cookie name
Test 2 – forcing errors during writing cookie file
Test 3 – cookie expiration time
Test 4 – session expiration time
Test 5 – possibility of enforcing session ID
Test 6 – associating session ID with IP address

connect • communicate • collaborate

Test 7 – using httponly attribute

More (in Polish):
http://security.psnc.pl/reports/sklepy_internetowe_
cookies.pdf

The results

Test 2 Test 3Test 1

Test 5Test 4 Test 6

connect • communicate • collaborate

Red and alike = dangerous
Green and alike = secure

Test 7

The most recent research
(10 selected e-commerce sites)

Credits to Jakub Tomaszewski (csc@bluerose.pl)
Only 1 column associated with sessions, but still shows
problemsproblems

Logging via SSL

Sending

sensitive data

via SSL

Password
Confirmation

email

Association

Session / IP

address

Secured from

XSS

Website 1 0 0 1 1 0 0

Website 2 0 0 1 0 0 0

Website 3 1 1 1 0 0 1

Website 4 1 1 0 1 0 1

Website 5 0 0 1 1 1 0

connect • communicate • collaborate

Website 5 0 0 1 1 1 0

Website 6 1 1 1 0 0 0

Website 7 0 0 1 0 0 0

Website 8 1 0 1 0 1 1

Website 9 0 0 1 0.5 0 0

Website 10 1 1 1 0.5 0 0

Cookie in PHP

Simple definition
<?

setcookie (“ counter ”, “ 1”, time()+3600 , setcookie (“ counter ”, “ 1”, time()+3600 ,
“ /my_dir ”, “ www.example.com ”, true , true);

?>

Significant properties
Name and value
Expiration time

connect • communicate • collaborate

Path (cookie visibility on the server)
Domain (where the browser may send the cookie to)
Additional attributes

Proper session configuration and
implementation

Session security may be assured both by proper
configuration and implementation

Even if PHP is configured badly, a developer may Even if PHP is configured badly, a developer may
implement secure session
ini_set(‘session.[parameter]’, ‘[value]’);

Significant topics to consider
Session ID threats

– Session Hijacking
– Session Fixation

connect • communicate • collaborate

– Session Fixation

Session and cookie expiration times
Applying security attributes
Session handling at the server side

Session ID threats (1)

Session Hijacking
A legitimate user establishes a session with the given ID
An attacker steals the cookie and establishes an own
session with this ID

Countermeasures
Use cookies for exchanging session IDs
Beware of XSS

– Sanitize input data (in general)
–

connect • communicate • collaborate

– Use security attributes (for cookies – will be shown later)

Consider custom cookies handling on the server side

Session ID threats (2)

Session Fixation
An attacker establishes a session with the given ID
An attacker forces the victim to use this ID

Countermeasures
Regenerate session ID as often as possible

– session_regenerate_id()
– Should be used at least just after the privileges have been

changed (e.g. after authentication)

Avoid session adoption

connect • communicate • collaborate

Avoid session adoption
– The applications should never accept session ID that was

enforced by the client

Expiration times

Session and cookie expiration time
The shorter, the more secure
However, the user must feel comfortable

Examples / suggestions
e-banking services: 10-20 minutes
SMS gateway: an hour
OWASP standard: 5 minutes!

Avoid persistent cookies whenever possible

connect • communicate • collaborate

Avoid persistent cookies whenever possible
The user should always be able to log out

Additional attributes

Domain and path
Should be consistent with minimum privileges principle

secure attributesecure attribute
Requires HTTPS in place to send cookie

httponly attribute
Disabless access to cookies from client side scripting
languages
Good support for protection against XSS attacks

connect • communicate • collaborate

Not all browsers support the attribute (especially older
versions)

Association with the IP address

Sending a cookie from other IP address than the one
stored by the server causes invalidating the session
Improves security, but significantly limits functionalityImproves security, but significantly limits functionality

The clients may use proxies
Mobile clients

Must be carefully considered during the design stage
Very rarely applied
Consider as a part of expert system

connect • communicate • collaborate

Consider as a part of expert system
Do not invalidate the session but take some extra care

Storing session data at the server
side

By default PHP stores session data in files under
/tmp path

Not secure especially in shared hosting scenarioNot secure especially in shared hosting scenario

Minimum: set a save path
In the PHP configuration file, or
Using ini_set() function:

ini_set(‘session.save_path’, ‘/safe/dir’);

Consider using custom database mechanism

connect • communicate • collaborate

Consider using custom database mechanism
Additional protection layer
Enables e.g. enhanced logging
Based on session_set_save_handler() function

Session management – summary

Sessions are extremely useful, because we may
differentiate users
This introduces danger of stealing identitiesThis introduces danger of stealing identities
PHP (and alike) offer easy session management
by default

However its security level should be increased

Many settings may be defined both by
administrators and developers

connect • communicate • collaborate

administrators and developers
There are many security/functionality tradeoffs

Additional measures are often a subject to consider
during the design stage
Significant to have sufficient
awareness on them

Other issues (short but relevant)Other issues (short but relevant)

connect • communicate • collaborate

Test and production environment

Usual mistakes (especially in non-purely corporate
environments)

No dedicated test environmentNo dedicated test environment
Not used or pre-release code/functionality left
Revealing diagnostic functionality

Countermeasures
Separate test and production environments
Test environment should work on same data (may be
statistically obfuscated)

connect • communicate • collaborate

statistically obfuscated)
Mechanism for assuring consistency between the two
environments necessary
Careful configuration of the release version

Leaving test functionality

In the binary code
More functionality = more code = more bugs
Does not fit to minimum privileges principle
Test functionality may contain more bugs or backdoors

In the source code
An attacker may try to draw conclusions on the process
of development
Sometimes sensitive data are disclosed in such

connect • communicate • collaborate

comments
– e.g. “Mike will repair that later” – so there is something worth

taking a look, let’s analyze that!

Configuration issues

The configuration facilities should assure that it is
possible to prepare a secure configuration

Problem for you: you do not design configuration Problem for you: you do not design configuration
facilities, but just implement the project

Moreover, the behavior of the application should:
Warn the user against setting insecure options and
explain the threads
Intuitively lead the user towards a more secure
configuration

connect • communicate • collaborate

configuration
Assure the user about the security level of the current
configuration

The code is good, but just a bit
inefficient

Not optimal code may be also dangerous
An attacker might search for data, for which the
application responds very slowlyapplication responds very slowly
E.g. loops with counters dependent on the user data
may be dangerous

int year = argv[1];

for (int i=1996; i<year; i++)

calculate_very_detailed_stats_for_year(i);

What will happen if the attacker may pass 3000 as year?

connect • communicate • collaborate

What will happen if the attacker may pass 3000 as year?
DoS/DDoS attacks on the application and/or server

So it is always worth saving your resources

Whether to defend on the
function/module level

Sometimes we write an internal function, accepting
some data that already “should have been” filtered

Our internal function may be copied to another module Our internal function may be copied to another module
that does not assure sufficient sanitization
The function may work on another OS/hardware under
different conditions

– It was one of the causes of the Therac 25 incident

Someone might reuse only a part of the function, not
aware about sanitizing issues

connect • communicate • collaborate

Indeed, it makes no sense that every single
function has its own sanitization mechanism – but
at least remember to consider the problem

NULL pointers may cause the most
trouble

And remember…

It is often easier to bypass security mechanisms
than to defeat it…

connect • communicate • collaborate

Source:
https://www.securecoding.org

